

AFIT/DS/ENS/08-03

METAMODELING TECHNIQUES TO AID IN THE AGGREGATION PROCESS OF

LARGE HIERARCHICAL SIMULATION MODELS

DISSERTATION
June F. D. Rodriguez

Major, USAF

AFIT/DS/ENS/08-03

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

METAMODELING TECHNIQUES TO AID IN THE AGGREGATION PROCESS

OF LARGE HIERARCHICAL SIMULATION MODELS

DISSERTATION

June F. D. Rodriguez, Major, USAF

AFIT/DS/ENS/08-03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this dissertation are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or the
U.S. Government.

AFIT/DS/ENS/08-03

METAMODELING TECHNIQUES TO AID IN THE AGGREGATION PROCESS OF

LARGE HIERARCHICAL SIMULATION MODELS

DISSERTATION

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Operations Research

June F. D. Rodriguez, B.S., M.S.

Major, USAF

August 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

METAMODELING TECHNIQUES TO AID IN THE AGGREGATION PROCESS OF

LARGE HIERARCHICAL SIMULATION MODELS

June F. D. Rodriguez, B.S., M.S.
Major, USAF

Approved:

/

Dr. ~oHfi(0. Miller
/J &

Committee Chairman

6 ~ ~ 0 3 .
Dr. Kenneth W. Bauer, Jr. Date
Committee Member

rL,+/tc- i 5 7 4 -
Lt Col Robert E. ~ e h e i , Jr., P ~ D . Date
Committee Member

Accepted:

WLCW / z Apr 08
M. U. Thomas Date
Dean, Graduate School of Engineering
and Management

iv

AFIT/DS/ENS/08-03

Abstract

This research investigates how aggregation is currently conducted for simulation of large

systems. The purpose is to examine how to achieve suitable aggregation in the

simulation of large systems. More specifically, investigating how to accurately aggregate

hierarchical lower-level (higher resolution) models into the next higher-level in order to

reduce the complexity of the overall simulation model. The focus is on the exploration of

the different aggregation techniques for hierarchical lower-level (higher resolution)

models into the next higher-level. We develop aggregation procedures between two

simulation levels (e.g., aggregation of engagement level models into a mission level

model) to address how much and what information needs to pass from the high-resolution

to the low-resolution model in order to preserve statistical fidelity.

We present a mathematical representation of the simulation model based on

network theory and procedures for simulation aggregation that are logical and executable.

This research examines the effectiveness of several statistical techniques, to include

regression and three types of artificial neural networks, as an aggregation technique in

predicting outputs of the lower-level model and evaluating its effects as an input into the

next higher-level model. The proposed process is a collection of various conventional

statistical and aggregation techniques, to include one novel concept and extensions to the

regression and neural network methods, which are compared to the truth simulation

model, where the truth model is when actual lower-level model outputs are used as a

direct input into the next higher-level model. The aggregation methodology developed in

this research provides an analytic foundation that formally defines the necessary steps

essential in appropriately and effectively simulating large hierarchical systems.

v

Acknowledgments

First and foremost, thank God I made it through successfully.

 Next, I would like to thank my advisor Dr. J.O. Miller (“Dr. Hoops”) for all the

hard work and guidance he provided. To my committee members, Dr. Kenneth Bauer

and Lt Col Robert Neher, thanks for all the patience and hours of statistical clarification

sessions. My AFIT friends, Capt (“Dr.”) Nate Leap, Maj Steve Oimoen and Capt

“Mikey” Turnbaugh, without you gentlemen I never would have made it through those

grueling classes. Ben, Earl and Scott thanks for all the coding help.

 Last but not least, my husband and two wonderful daughters, without whose love,

support and understanding would have made my time in AFIT a lot more difficult than it

could have been.

 vi

Table of Contents

Page

Abstract .. iv

Acknowledgments... v

List of Figures .. ix

List of Tables ... xiii

I. Introduction .. 1

1.1 General Discussion .. 1
1.2 Motivation ... 8
1.3 Problem Statement ... 9
1.4 Proposed Research Contributions .. 9

1.4.1 Primary Research Contributions ... 9
1.4.2 Secondary Research Contributions ... 9

1.5 Organization of Dissertation .. 10

II. Literature Review ... 11

2.1 Overview ... 11
2.2 Background .. 12
2.3 Pre-processing and Feature Selection/Feature Extraction 13
2.4 Variance Reduction Techniques .. 16
2.5 Model Abstraction ... 18
2.6 Modeling and Simulation Software Tools ... 28

III. Aggregation Methodology Development ... 34

3.1 Overview ... 34
3.2 Experimental Toy Model: (s, S) Inventory System ... 36
3.3 Proposed Aggregation Process .. 39
3.4 Mathematical Representation of a Discrete Event Simulation (DEVS) using factor
analytic method.. 46
3.5 Determining number of replications based on precision accuracy β 56
3.6 Aggregation Methodologies .. 58

3.6.1 Method 1 – Mean (ilY) ... 60

3.6.2 Method 2 – Normal (, il
sY
J

) ... 61

3.6.3 Method 3 – Control Variate (CV) Technique Mean (l l()iYμ β) .. 61

3.6.4 Method 4 - l l() CV 11 Normal (,)
i iY Y sεμ β μ σ∼ .. 62

3.6.5 Method 5 – Distribution Fitting ... 63
3.6.6 Method 6 – Regression .. 64

 vii

3.6.7 Method 7 – Artificial Neural Network (ANN) .. 67
3.6.8 Method 8 – Meta Simulation (MetaSim) .. 77

3.7 Training and Testing Data Set-up .. 84
3.8 Higher-Level Model Output Comparison .. 87
3.9 Chapter Summary .. 93

IV. Application I: Flying Training Model (FTM), Results and Analysis 95

4.1 Overview ... 95
4.2 Flying Training Model ... 95

4.2.1 Model Assumptions .. 95
4.2.2 Model Description ... 96
4.2.3 Simulation Input and Output Parameters .. 97

4.3 Results and Analysis .. 102
4.3.1 Mathematical Representation of the Flying Training Model ..102
4.3.2 Determining the Number of Replications Based on β ...108
4.3.3 Training/Testing Data set-up ..109
4.3.4 Output Comparison ..110

4.4 Summary .. 125

V. Application II: ALS Sortie Generation Model (ASGM), Results and Analysis 126

5.1 Overview ... 126
5.2 ALS Sortie Generation Model ... 128

5.2.1 Model Assumptions ...128
5.2.2 Model Description ..128
5.2.3 Simulation Input and Output Parameters ...128

5.3 Results and Analysis .. 130
5.3.1 Mathematical Representation of the ALS Sortie Generation (ASG) Model130
5.3.2 Determining the number of replications ...138
5.3.3 Training/Testing Data set-up ..138
5.3.4 Output Comparison ..139

5.4 Routing Model (RM) ... 163
5.4.1 Routing Model Assumptions ...163
5.4.2 Routing Model Description ...163
5.4.3 Routing Model Training/Testing Data set-up ...165
5.4.4 Routing Model Output Comparison ..165

5.5 Summary .. 175

VI. Contributions and Future Research .. 177

6.1 Overview ... 177
6.2 Research Contributions.. 177
6.3 Recommendations for Future Research ... 182
6.4 Conclusion ... 183

Bibliography ... 185

Appendix A: (s, S) Inventory Toy Model Data and Code ... 194

Appendix B: Flying Training Model Details ... 202

Appendix C: Flying Training Model Data and Code ... 208

 viii

Appendix D: ALS Sortie Generation Model Data and Code ... 217

Appendix E: Routing Model Data and Code ... 227

Appendix F: MetaSim Pseudo-Code ... 228

 ix

List of Figures

Page

Figure 1 - Combat Modeling Hierarchy .. 1

Figure 2 - "Old Think" on Model Families ... 4

Figure 3 - "New Think": Integrated Hierarchical Families of Model 4

Figure 4 - Passing a simple average to the lower-resolution model 7

Figure 5 - Passing several averages to the lower-resolution model, one for each cluster .. 8

Figure 6 - Step 2 of the Proposed Model Aggregation Process .. 11

Figure 7 - Aspects of Resolution .. 21

Figure 8 - Spatial Complexity ... 22

Figure 9 - "Best" Model Determination .. 23

Figure 10 - Taxonomy of Model Abstraction Techniques .. 26

Figure 11 - Air Force Standard Analysis Toolkit (AFSAT) ... 29

Figure 12 - Aggregation Methodology Development ... 35

Figure 13 - Overall Model Aggregation Procedure .. 40

Figure 14 - Bauer 91 Simple Network Graph ... 49

Figure 15 - Simple Network Graph Edge Incidence Matrix ... 50

Figure 16 - Simple Network Graph Edge Weighting Matrix ... 50

Figure 17 - Simple Network Graph Pseudo-Covariance (C) Matrix 51

Figure 18 - Simple Network Graph D Matrix ... 51

Figure 19 - Simple Network Graph Pseudo-Correlation (R) Matrix 52

Figure 20 - Aggregation Methods Usage Guideline ... 59

 x

Figure 21 - Method 1 Aggregation Diagram .. 60

Figure 22 - Mean vs. Distribution Predictions for the Regression Method 67

Figure 23 - FANN model topology ... 71

Figure 24 - RBF model topology .. 72

Figure 25 - GRNN model topology .. 75

Figure 26 - Full Model Flow Example ... 79

Figure 27 - MetaSim Model Flow Example ... 79

Figure 28 - Graphs of the pdf and cdf ... 91

Figure 29 - Flying Training Process ... 96

Figure 30 - FTM Full Model ... 97

Figure 31 - FTM Base A Model (C-5 ACAR Sortie 1) .. 103

Figure 32 - FT Model Network Graph .. 103

Figure 33 - a) Adjacency and b) Incidence Matrix of the FT Model 104

Figure 34 - FT Model Network Graph Edge Weighting Matrix 104

Figure 35 - FT Model Network Graph Pseudo-Covariance (C) Matrix 105

Figure 36 - FT Model Network Graph D Matrix .. 105

Figure 37 - FT Model Network Graph Pseudo-Correlation (R) Matrix 105

Figure 38 - Base A Simulation Output ... 111

Figure 39 - FTM Base A C-5 ACAR M1 Aggregation Input ... 112

Figure 40 - FTM Base A C-5 ACAR M2 Aggregation Input ... 113

Figure 41 - Base A FANN RMSE .. 116

Figure 42 - Base B FANN RMSE... 116

Figure 43 - Base A RBF RMSE .. 116

 xi

Figure 44 - Base B RBF RMSE .. 116

Figure 45 - Base A GRNN RMSE .. 117

Figure 46 - Base B GRNN RMSE .. 117

Figure 47 - FTM Z2 Histogram Comparison... 122

Figure 48 - FTM Z2 Absolute-Error Histogram .. 122

Figure 49 - FTM Z2 CDF Comparison .. 123

Figure 50 - FTM Z2 CDF-Differences Plot ... 124

Figure 51 - Sortie Generation Process .. 126

Figure 52 - Sortie Generation Process with PHM .. 127

Figure 53 - Modified Sortie Generation Process with PHM (Detailed Structure) 127

Figure 54 - ASG Model Network Graph .. 131

Figure 55 - Adjacency Matrix of the ASG Model .. 132

Figure 56 - Incidence Matrix of the ASG Model .. 132

Figure 57 - ASG Model Network Graph Edge Weighting Matrix 133

Figure 58 - ASG Model Network Graph Pseudo-Covariance (C) Matrix 134

Figure 59 - ASG Model Network Graph D Matrix... 134

Figure 60 - ASG Model Network Graph Pseudo-Correlation (R) Matrix 135

Figure 61 - ASGM Submodel Direct Method Output .. 141

Figure 62 - ASGM M1 PFFTiS (Y1) Partial Aggregation Input 142

Figure 63 - ASGM M2 PFFTiS (Y1) Partial Aggregation Input 142

Figure 64 - ASGM LL FANN (Method 7) ... 148

Figure 65 - ASGM LL RBF (Method 7) ... 149

Figure 66 - ASGM Submodel GRNN (Method 7).. 149

 xii

Figure 67 - ASGM GRNN Y1 Contour Plot .. 150

Figure 68 - ASGM GRNN Y1 Surface Plot ... 150

Figure 69 - ASGM GRNN Y2 Contour Plot .. 151

Figure 70 - ASGM GRNN Y2 Surface Plot ... 151

Figure 71 - ASGM GRNN Y3 Contour Plot .. 151

Figure 72 - ASGM GRNN Y3 Surface Plot ... 151

Figure 73 - ASGM LL FANN with Controls (Method 7.1) ... 152

Figure 74 - ASGM LL RBF with Controls (Method 7.1) ... 152

Figure 75 - ASGM LL GRNN with Controls (Method 7.1) ... 153

Figure 76 - ASGM Z1 Histogram Comparison ... 160

Figure 77 - ASGM Z1 Absolute-Error Histogram... 160

Figure 78 - ASGM Z1 CDF Comparison ... 161

Figure 79 - ASGM Z1 CDF-Differences Plot .. 162

Figure 80 - Routing Model Diagram .. 164

Figure 81 - RM Y1 CDF Comparison (1) .. 170

Figure 82 - RM Y1 CDF-Differences Plot (1) ... 171

Figure 83 - RM Y1 CDF Comparison (2) .. 172

Figure 84 - RM Y1 CDF-Differences Plot (2) ... 173

Figure 85 - RM Y1 CDF Comparison (3) .. 174

Figure 86 - RM Y1 CDF-Differences Plot (3) ... 175

Figure 87 - Overall Model Aggregation Procedure .. 179

 xiii

List of Tables

Page

Table 1 - Combat Model Hierarchy Details .. 3

Table 2 - Types of Model Complexity .. 19

Table 3 - Test Case Spatial Complexities ... 20

Table 4 - Some Common Abstractions ... 25

Table 5 - AFSAT Details .. 30

Table 6 - Inventory Data Radial Basis Function ANN MAE/MAPD 37

Table 7 - Inventory Data Feed-forward ANN MAE/MAPD .. 38

Table 8 - Simple Network Graph Extracted Factors ... 52

Table 9 - Simple Network Graph Initial Factor Loadings - C .. 53

Table 10 - Simple Network Graph Quartimax Rotated Factor Matrix - C 54

Table 11 - Simple Network Graph Varimax Rotated Factor Matrix - C 55

Table 12 - Simple Network Graph Equamax Rotated Factor Matrix - C 55

Table 13 - Some RBF activation function choices ... 74

Table 14 - k-Fold (k = 5) Method Cross-Validation Set-up .. 86

Table 15 - Hold-out Method Cross-Validation Set-up ... 87

Table 16 - Aggregation Methodology Summary .. 94

Table 17 - FTM Pilot Types.. 97

Table 18 - FTM LL Input Features/Variables ... 98

Table 19 - FTM LL Key Input Factors Design of Experiment ... 99

Table 20 - FTM LL Key Output Performance Measures ... 99

Table 21 - FTM Base A Input Parameters .. 100

 xiv

Table 22 - FTM Base B Input Parameters .. 101

Table 23 - FTM HL Key Output Performance Measures ... 102

Table 24 - FT Model Network Graph Extracted Factors .. 106

Table 25 - FT Model Network Graph Initial Factor Loadings - C 106

Table 26 - FT Model Network Graph Quartimax Rotated Factor Matrix - C 106

Table 27 - FT Model Network Graph Varimax Rotated Factor Matrix - C 106

Table 28 - FT Model Network Graph Equamax Rotated Factor Matrix - C 107

Table 29 - FT Model Network Graph Initial Factor Loadings - R 107

Table 30 - FT Model Network Graph Varimax Rotated Factor Matrix - R 107

Table 31 - FTM Hold-out Training/Testing Data Set-up .. 110

Table 32 - FTM M1 and M2 Input Data ... 114

Table 33 - FTM M3 and M4 Input Data ... 114

Table 34 - FTM M5 Input Data .. 114

Table 35 - FTM M6 Input Data .. 114

Table 36 - Method 7 FTM ANN Attributes .. 117

Table 37 - FTM M7 (ANN-GRNN) Input Data ... 118

Table 38 - FTM TPG (Z1) ... 118

Table 39 - FTM TiS (Z2) ... 119

Table 40 - FTM MCR (Z3) .. 119

Table 41 - Base C TPG (Z1) 98.57% Confidence Interval .. 120

Table 42 - Base C TiS (Z2) 98.57% Confidence Interval ... 120

Table 43 - Base C MCR (Z3) 98.57% Confidence Interval .. 120

Table 44 - FTM Z2 K-S Test ... 124

 xv

Table 45 - ALS Sortie Generation Model Input Features ... 129

Table 46 - ASGM LL Key Input Features .. 130

Table 47 - ASGM HL Key Output Performance Measures .. 130

Table 48 - ASG Model Network Graph Extracted Factors ... 135

Table 49 - ASG Model Network Graph Initial Factor Loadings - C 136

Table 50 - ASG Model Network Graph Quartimax Rotated Factor Matrix - C 136

Table 51 - ASG Model Network Graph Varimax Rotated Factor Matrix - C 136

Table 52 - ASG Model Network Graph Equamax Rotated Factor Matrix - C 137

Table 53 - ASGM Submodel Key Output Performance Measures 138

Table 54 - ASGM 5-fold Training/Testing Data Set-up ... 139

Table 55 - ASGM M1 and M2 Input Data .. 143

Table 56 - ASGM M3 and M4 Input Data .. 143

Table 57 - ASGM M5 Input Data ... 144

Table 58 - ASGM M6 Significant Factors .. 145

Table 59 - ASGM M6.1 Significant Factors for Y1 .. 146

Table 60 - ASGM M6.1 Significant Factors for Y2 .. 146

Table 61 - ASGM M6.1 Significant Factors for Y3 .. 146

Table 62 - FTM M6 (Regression) Input Data ... 147

Table 63 - ASGM M6.1 (Regression with Controls) Input Data 147

Table 64 - Method 7 ASGM ANN Attributes .. 150

Table 65 - ASGM M7 (ANN-GRNN) Input Data .. 151

Table 66 - Method 7.1 ASGM ANN with Controls Attributes....................................... 153

Table 67 - ASGM M7.1 (ANN-GRNN with Controls) Input Data 154

 xvi

Table 68 - ASGM MCR (Z1) for all Scenarios ... 155

Table 69 - ASGM NMCM (Z2) for all Scenarios ... 155

Table 70 - ASGM NMCS (Z3) for all Scenarios ... 155

Table 71 - ASGM FSER (Z4) for all Scenarios ... 155

Table 72 - ASGM Bonferroni α Comparison ... 156

Table 73 - ASGM MCR (Z1) 99.5% Confidence Interval .. 157

Table 74 - ASGM NMCM (Z2) 99.5% Confidence Interval .. 157

Table 75 - ASGM NMCS (Z3) 99.5% Confidence Interval .. 158

Table 76 - ASGM FSER (Z4) 99.5% Confidence Interval .. 158

Table 77 - FTM Z1 K-S Test ... 162

Table 78 - RM 5-fold Training/Testing Data Set-up .. 165

Table 79 - RM Random Controls.. 166

Table 80 - RM Regression BWC (T6) Significant Factors for Y1 167

Table 81 - RM Regression ConR (T7) Significant Factors for Y1 167

Table 82 - RM Regression ConT (T8) Significant Factors for Y1 167

Table 83 - RM Prediction Errors .. 168

Table 84 - RM TiR (Y1) for all Scenarios ... 168

Table 85 - RM TiR (Y1) 98.75% Confidence Interval .. 169

Table 86 - RM Y1 K-S Test (1) .. 171

Table 87 - RM Y1 K-S Test (2) .. 173

Table 88 - RM Y1 K-S Test (3) .. 175

Table 89 - Aggregation Methodology Summary .. 180

 1

METAMODELING TECHNIQUES TO AID IN THE AGGREGATION PROCESS

OF LARGE HIERARCHICAL SIMULATION MODELS

I. Introduction

1.1 General Discussion

The purpose of this research is to investigate how aggregation is/could be conducted in

modeling and simulation (M&S) with the intent of improving the process by developing a

well-defined set of procedures to aid in the aggregation process. Specifically,

investigating the issue of how to properly (with the intent of providing rigorous

theoretical/mathematical support) aggregate hierarchical lower-level models into the next

higher-level (e.g., aggregation of engagement level models into the mission level model)

as depicted in Figure 1 (i.e., how should the output from a lower-level model be

aggregated and used as an input to a higher-level model?). Due to the enormity of the

problem, the scope of the research will mainly focus on investigating the aggregation

between two adjacent levels of the hierarchy. The research on aggregation will not be

limited between any levels in order to still gain insight from the other levels of the

hierarchical model aggregation techniques. The application of the developed model

aggregation methodology will be applied to real-world military simulation models in the

area of flying training and the current Air Force aircraft sortie generation process.

Figure 1 - Combat Modeling Hierarchy [Miller, 2006]

 2

The hierarchical combat simulation pyramid consists of four levels ranging from

the most detailed (engineering) to most aggregated (campaign) level simulations, as

depicted in Figure 1. At the engineering level, often the concern is modeling system

performance and is very detailed. The engagement level usually represents engagements

between weapons and targets ranging from one-on-one to few-on-few types of scenarios.

The mission level models simulate multiple air platforms engaging multiple targets. Here

the aggregation is fairly moderate and is applied to a few of the entities and processes. At

the top of the hierarchy is the campaign level where usually the focus is on the entire war

and the air engagement is but one of the aspects of the entire campaign [Sisti, 1998]. Due

to the enormity of the scope covered at the campaign level, the entities and process are

very highly aggregated with very low resolution in order for the model to run in an

acceptable time frame, at the cost of losing model fidelity and (typically) accuracy. The

typical aggregation performed at this level is through replacement of individual entity and

process activities with “average” performances. As more and more models are

aggregated together (e.g., mission level model outputs from EADSIM, SUPRESSOR,

SEAS, etc., are used as input to campaign level models such as THUNDER and CFAM)

the level of detail has to be reduced in order to avoid the creation of monolithic models

that could virtually run forever. Thus, the questions of as to how and what elements

can/should be combined or aggregated arise.

 Models at specific levels are developed for specific purposes and have

corresponding levels of fidelity and resolution associated with them. In practice, high-

resolution simulations for modeling short-term and small scale activities are located at the

lower-level of the hierarchy. At the very top of the hierarchy, the collective higher-

resolution model could, in theory, be implemented numerous times during a full scale

simulation of a campaign model. In order for the campaign model to run in a reasonable

time, some sort of aggregation and/or calibration needs to be performed for the set of

high-resolution modules [Guo et al., 1998]. Table 1, obtained from Appendix E of Davis

et al. [1997] best summarizes the different details at the different levels of the modeling

hierarchy.

 3

Table 1 - Combat Model Hierarchy Details [Davis et al., 1997, Table E.1]
Level of
Model Scope Level of Detail Time Span Outputs Illustrative Uses Examples

Campaign Joint and
combined Highly aggregated Days to weeks

Campaign dynamics
(e.g., force

drawdowns and
movement)

Evaluation of force
structures, strategies,

and balances;
wargaming

CEM,
TACWAR,
Thunder,

JICM

Mission
Multi-platform,
multi-tasking
force package

Moderate
aggregation, with

some entities

Minutes to
hours

Mission effectiveness
(e.g., exchange

ratios)

Evaluation of
alternative force-

employment concepts,
forces, and systems;

wargaming

Eagle,

Suppressor,
EADSIM,

NSS

Engagement One to a few
friendly entities

Individual entities,
some detailed
subsystems

Seconds to
minutes

System effectiveness
(e.g., probability of

kill)

Evaluation of
alternative tactics and

systems; training

Janus,
Brawler,
ESAMS

Engineering
Single weapon

systems and
components

Detailed, down to
piece parts, plus

physics

Subseconds to
seconds

Measures of system
performance

Design and evaluation
of subsystems and
subsystems; test

support

Many,
throughout

R&D centers

There are several existing literatures on model aggregation, especially in the area

of economics and database management, but as far as simulation model aggregation none

have specifically established any rigorous mathematical process of aggregation that is

comprehensible and executable. According to the National Research Council study done

for the Navy and Marine Corps, “no one today knows how to carry out the vision of new

think" in the combat modeling arena [Davis et al., 1997]. This “new think” is in

reference to the idea of integrating and aggregating between hierarchical models as

depicted in Figure 3. Figure 2 represents the “old think” where the scope of

communication between the model hierarchies is limited. Part of the problem stems from

the fact that models are not initially built with cross-calibration in mind and integrating

with other models for eventual aggregation becomes extremely complicated [Davis et al.,

1997].

 In addition, there are organizational problems in the construction of the models,

often owned by different organizations, in that models are designed independently and

linkages between models are often made up, and if close to reality are often flawed,

which eventually results in erroneous results and integration problems. The idea of “new

think” envisions that different hierarchical models are designed with different models in

mind from the onset of model building, in terms of within and between model levels.

Unfortunately, the idea of “new think” is more difficult to put into practice which is a

subject of serious theoretical research [Davis et al., 1997].

 4

Figure 2 - "Old Think" on Model Families [Davis et al., 1997, Fig 6.1]

Figure 3 - "New Think": Integrated Hierarchical Families of Model [Davis et al., 1997, Fig 6.2]

 It is often the case in practice that an aggregated model which re-uses higher

resolution lower-level models may result in a more detailed system model than the

simulation objective. With respect to managing the simulation goals, simulating such a

gigantic system results in a waste of simulation time and money. These simulation costs,

however, can be reduced through the use of abstract modeling techniques and thereby

reducing the complexity of the higher-level model. This is especially true when the

higher-resolution model is but a subset of the more complex, higher-level model.

Abstraction techniques can reduce the lower-level model complexity by removing,

combining, or approximating model parameters or variables at a less detailed level and

thereby reducing the complexity of the higher-level model without greatly influencing the

simulation results.

 The modeling and simulation of monolithic and complex models are most of the

time themselves computationally intricate and it is often infeasible to imitate every aspect

of the system being modeled through simulation. A method to abate the intricacy is by

 5

means of hierarchical decomposition of the complex simulation model, i.e., the whole

system is divided hierarchically into simpler modules, as is commonly the case in combat

models, each with different simulation resolution [Guo et al., 1998]. The simpler

modules can contain quite a lot of details (high-resolution) or minimal details (low-

resolution); its simplicity is in terms of the limited focus of the module (e.g., modeling

one weapon system at a time, versus several weapons interacting simultaneously).

Frequently, high-resolution models simulate a very extensive set of information of all

possible events and the details of each entity and processes are finer and are usually very

time consuming. On the other hand, low-resolution modules usually carry out collective

assessment of the different intricacies in the module; that is, find out what are the most

likely results “on the average.”

Axtell [1992] describes model aggregation as the decrease in the dimensionality

of a simulation model through the fusion of model variables into composite variables.

Aggregation simplifies a more complex system in some specific way which enables the

users to get a better grasp on the system at hand. However, model aggregation tends to

produce information loss on the original variables. In addition, the aggregate model will

be but an imperfect version of the original non-aggregated system. Although the

abstracted model is usually only able to estimate near correct predictions, it is

nevertheless valuable by virtue of its simplicity and execution speed [Axtell, 1992].

Model aggregation often involves a transformation of data or information. For

instance, at a lower-level model, individual aircraft sortie durations might be of interest

while in the aggregated model (higher-level model), the concern might be the total fleet

sortie duration. In this case, the input into the aggregated model might just be the

summation of the individual aircraft durations, therefore eliminating the need to model

each individual aircraft. This leads to the question of how should data or information be

transformed in the aggregated model?

 The most common form of data and information transformation into an

aggregated model is the use of the Sum and/ or Average operators, along with First, Last,

Mode, Minimum, and Maximum [Oracle, 2006; Zeigler et al., 2000; Cassandras et al.,

2000]. Typically, high-resolution models of simulated systems create very disparate

 6

responses, especially with different levels of input parameters, such that aggregating all

of these into one average may not be appropriate. For example, in the simulation of

flying training discussed in Chapter 4, it does not make any sense to take the average (or

summation) of the different time in system outputs for the different specific pilot types.

It would make more sense to group the outputs according to the same set of pilot types

first before aggregating the time in system output, which is the main idea for the

application of Adaptive Resonance Theory (ART) 2 [Carpenter and Grossberg, 1987b;

1991] which is briefly discussed later.

 Axtell [1992] enumerates several reasons why there is a need for aggregation in

model development, some of which are listed below:

 lack of sufficient data for estimation and/or validation of a high-resolution
model;

 analysis of the full lower-level system is difficult due to inadequate
understanding of the system;

 sometimes the “details” of the higher-resolution model may be unnecessary
or irrelevant to the specific question at hand;

 real-time solutions for performing ‘what if’ analyses, may not be feasible with
lower-level detailed models, thus alternatively needing an immediate
simplified version;

 lack of resources (usually due to budget constraints) to formulate and solve
the highly-detailed model;

 large extent of the information obtained from the highly-detailed simulations
could make the evaluation so enormous and insignificant that sometimes all
that is really needed is the “simpler” answer.

 Typically, a number of these reasons may occur concurrently and serve as the

underpinning for the use of an aggregate model. Aggregation can be used as a tool for

coping with complexity and it can be valuable in two separate ways. First of all,

aggregation procedures can significantly decrease the size of a complex system and in so

doing makes a system comprehensible to analysts where he/she can develop some

intelligent intuitions. It is the ability of aggregation to minimize the size or degree of

difficulty of a complex system which makes it valuable in the analysis of large-scale

systems. The other way in which aggregation exhibits its effectiveness in application to

 7

highly complex systems is by filtering out the most significant features of the system

instead of just truncating [Axtell, 1992].

 The lower-level models (generally a high-resolution model) produce output data

which are then taken as input for the next higher-level model (typically a lower-

resolution model), as depicted in Figure 4 [Cassandras et al., 2000]. Given an input

vector u, along with the randomness ω in the model, the high-resolution model produces

a sample path h(u, ω). Of course, the interest cannot lie with one replication, so running

several replications becomes important. Thus, from the multiple replications, the interest

is in E{h(u, ω)}. From this concept, it is typical in hierarchical simulation to use the

high-resolution output E{h(u, ω)} as an input to the lower-resolution model. According

to Cassandras et al. [2000] the practice of lumping the grand mean into one input is

unacceptable since this conceals the significant features of the high-resolution output.

This is due to the fact that significant statistical information (i.e., statistical fidelity) is

concealed by this process, which could result in possible erroneous solutions. This is

especially true for different sets of input into the higher-level model. These authors

suggest clustering (grouping) the different higher-resolution model input first (by means

of ART 2 neural network, originally developed by Carpenter and Grossberg in the

1980’s) and take the corresponding output as one group, then take the group’s expected

value separately as the lower-resolution model’s input, as depicted in Figure 5. In order

to accommodate this concept, the input output from the lower to the higher level will be

grouped according to scenarios since scenarios are distinguished from each other based

on the value of their input.

Figure 4 - Passing a simple average to the lower-resolution model [Cassandras et al., 2000, Fig 2]

 8

Figure 5 - Passing several averages to the lower-resolution model, one for each cluster

[Cassandras et al., 2000, Fig 3]

 The concern here is to do the systematic “lumping” without waiving statistical

fidelity. What is meant by “statistical fidelity” is the statistical information generated at

the low-level, high-resolution simulation model should be maintained precisely at the

next higher-level models. Parallel simulation has been used in the field as a way to

lessen the burden of the complexity of simulating macromodels. However, in general, it

is quite complex to run a simulation model completely in parallel for its entirety

especially if several of its parts flow in a sequential manner [Guo et al., 1998].

 Therefore, a systematic design and analysis framework is definitely desirable in

order to establish guidelines as to how to properly aggregate models between the

simulation levels. In this research, investigation into the workings of such a framework is

explored. The main effort has been directed at developing an aggregation methodology

between two simulation levels such that the question of how much and what information

needs to pass from the high-resolution to the low-resolution model in order to preserve

statistical fidelity can be answered. The proposed aggregation methodology is further

discussed in detail in Chapter 3.

1.2 Motivation

Today, simulation is a very popular technique for the analysis and/or design of existing or

proposed intricate system structures. The attraction to this technique is mainly due to its

flexibility and to its ability to model real-world systems in some great detail, which, in

turn, leads simulation to be used as a tool for decision support in managing and

 9

controlling the underlying complex system. Although simulation models often entail less

restrictive assumptions than mathematical models when symbolizing intricate, dynamic

systems, the simulation models themselves are often complicated and typically of high

dimensionality. Using an appropriately built metamodel, a quick analysis can be formed

while retaining the statistical fidelity of the simulation model. Thus, a structured

methodology is needed to rapidly and efficiently explore the more complex simulation

model.

1.3 Problem Statement

The modeling and simulation community need a coherent and systematic manner of

aggregating large hierarchical simulation models. This research will facilitate methods

on determining what part of the hierarchical simulation can be aggregated and at the same

time provide ideas on the different aggregation techniques that can be implemented to aid

in building statistically sound simulation model aggregation.

1.4 Proposed Research Contributions

1.4.1 Primary Research Contributions

 Big picture view of the aggregation process for hierarchical simulation models
with a well-defined mathematical framework for passing data/information
from one level of fidelity to the next;

 Describe general steps involved with aggregating of processes and entities;

 Build quantifiable measures of how well the aggregation process captures

desired model outputs without sacrificing accuracy.

1.4.2 Secondary Research Contributions

 Determine the process of passing means and/or distributions to the next higher
level;

 10

 Determine what aggregation works best for specific applications of combat
models and other types of models;

 Demonstrate different techniques of aggregation and/or combining known

techniques into one concise process.

1.5 Organization of Dissertation

This dissertation is organized into the following six chapters: Introduction, Literature

Review, Methodology, Flying Training Model, Results and Analysis, ALS Sortie

Generation Model, Results and Analysis, and Conclusions and Recommendations. A

brief description of each follows.

 Chapter 1: Introduction – This chapter provides an introduction to the problem of

simulation model aggregation, motivation for this research, description of the problem

statement and the proposed research contributions.

Chapter 2: Literature Review – This chapter provides a literature review on past

and current practices in modeling large hierarchical simulations. Along with these

practices, different possible statistical techniques that can be used in simulation model

aggregation are also investigated.

Chapter 3: Methodology – This chapter describes the proposed aggregation

methodology for large hierarchical simulation models and the various statistical

techniques that are used in the research.

Chapter 4: Flying Training Model, Results and Analysis – The first application of

a real world simulation model is described. Results and analysis on the application of the

different aggregation techniques as implemented to the FTM is described.

Chapter 5: ALS Sortie Generation Model, Results and Analysis – The second

application of a real world simulation model is described. Results and analysis on the

application of the different aggregation techniques as implemented to the ASGM is

described.

Chapter 6: Contributions and Future Research – Contributions to the field of

modeling and simulation and recommendations for future research are provided.

 11

II. Literature Review

2.1 Overview

This chapter is built upon the review of the different statistical techniques that can be

utilized for aggregation in modeling and simulation as depicted in Figure 6. The

organization of this chapter is as follows. Section 2.2 provides a background and

discussion on aggregation as it pertains to modeling and simulation. In Section 2.3 the

pre-processing of model input along with the different feature selection/extraction

techniques are discussed. In Section 2.4 the different variance reduction techniques that

will be used in the aggregation process are reviewed. The different abstraction

techniques that are currently used in the field, which include aggregation, are detailed in

Section 2.5. Finally, Section 2.6 provides a brief description of the software used in the

application portion of this dissertation.

Mission Level
Model

Mission Level
Inputs

Mission Level
Outputs

Campaign Level
Model

Campaign Level
Outputs

Aggregation

Metamodeling

Complexity
(Spatial, Temporal, etc.)

Others?

Apply VRT
(type?)

Campaign Level
Inputs

(Aggregated?)

How?

What?

Homogeneous
vs.

Non-homogenous?

Within vs. Between
Mission level models

Mission Level
Model

Apply VRT
(type?)

Pre-processing
(type?)

Mission Level
Model

Mission Level
Inputs

Mission Level
Outputs

Campaign Level
Model

Campaign Level
Outputs

Aggregation

Metamodeling

Complexity
(Spatial, Temporal, etc.)

Others?

Apply VRT
(type?)

Campaign Level
Inputs

(Aggregated?)

How?

What?

Homogeneous
vs.

Non-homogenous?

Within vs. Between
Mission level models

Mission Level
Model

Apply VRT
(type?)

Pre-processing
(type?)

Figure 6 - Step 2 of the Proposed Model Aggregation Process

 12

2.2 Background

It is sometimes unavoidable to build models with appropriate multifarious complexity in

order to capture certain phenomena. For a lot of researchers, capturing the correct

intricacy continues to be an ongoing research issue. But, how is complexity defined?

According to Axtell [1992], a large-scale system does not make a system complex;

rather, the greater number of interactions in a large-scale system makes it a complex

system. Large-scale systems are usually characterized by the existence of several

variables, both dependent and independent. Also, according to the online Merriam-

Webster dictionary [2007], complexity is “the quality or state of being complex.” So,

what does it mean to be complex? Again, according to the Merriam-Webster online

dictionary, it is something that is “hard to separate, analyze, or solve,” attributed most

likely to being “composed of two or more parts.” Accordingly, Axtell [1992] proposes

that a tool that can be used for dealing with complexity is aggregation, which is a type of

model simplification technique. As defined in the Department of Defense Modeling and

Simulation Master Plan [1995], aggregation is “the ability to group entities while

preserving the collective effects of entity behavior and interaction while grouped.”

Recommended aggregation methodologies are based on the scale of interest.

Decision makers need reliable and well-synthesized information about the environment

without getting lost in the detail. A “pyramid” or “upward” approach in combat

modeling typically starts with a very complex model to capture very detailed aspects of a

system all the way to a highly aggregated model representation. Complexity typically

diminishes as the spatial and temporal scales increase. Usually, the complexity of

different models may be easily grasped, but it is more often than not complicated to

characterize it in mathematical representations without creating some simpler

assumptions. It has been abundantly shown in literature that increasing model

complexity does not in effect imply model accuracy increase [Pachepsky et al., 2006].

Several modeling application of battlefield simulations depict different model

complexities at the different levels [Sisti and Farr, 1998].

Our proposed aggregation process is best summarized in Figure 6. There is no

universal method to solve every problem and the process prescribed here is just that, one

 13

way to properly capture the model aggregation process. The analyst must pick and

choose based on the advantages and disadvantages of particular methods. In most cases,

the different statistical procedures selected in this research have been extensively used

and explored successfully in the field, but the combination of these different techniques

into one continuous process for model aggregation purposes is what will make the

proposed process comprehensible and executable.

2.3 Pre-processing and Feature Selection/Feature Extraction

We know from our past experiences that pattern recognition as carried out by humans is

usually built on a very few of the most important features. An example of such is the

classification of the type of crop in the field merely by its color or shape. By the same

token, a similar task is attempted in constructing techniques for automatic classification

or prediction in any pattern recognition problem based only on a few important features

typifying the class membership or prediction. In the context of using artificial neural

network (ANN) as the metamodel of the simulation model, the individual inputs from the

higher-resolution models into the lower-resolution model are considered as the feature set

in this case. But before representing the entire feature set into the parameterized neural

network function, it is often beneficial to perform an initial pre-processing stage before

hand where the data is transformed into some new representation. The pre-processing

stage may involve a simple linear rescaling of the data such as normalization or

standardization, and/or a more complex transformation process of dimensionality

reduction such as feature selection or extraction [Bishop, 1995]. Such pre-processing

may lead to a much improved ANN performance.

Although there is no theoretical rationalization for restricting the amount of

features to include in the model, often in practice after a certain point, increasing the

number of features can actually lead to a decrease in performance of the classification

system. The key reason for limiting the features to the absolute minimum is to curb the

phenomenon, coined by Richard Bellman in 1961, as the “curse of dimensionality”

[Devijver and Kittler, 1982]. According to Bishop [1995] there are two main types of

pattern recognition tasks: (1) classification problems where the outputs are the estimates

 14

of probability of class membership and (2) prediction problems, in which the continuous

variable outputs of the network correspond to the expected value of the model at a given

point in input-space, both of which are particular function approximations. The pattern

recognition task as a metamodeling tool for this research will be on prediction problems

since these are the most typical type encountered in simulation.

Although increasing the quantity is never an exact substitute for quality, typical

measures of abating this dilemma is through the integration of prior knowledge about the

problem and incorporating all the features that could perhaps present useful information.

Often, an increase in the number of features produces an even more intricate classifier

structure. In addition, input data with redundant or irrelevant features can cause

damaging effect on the accuracy of the classifier or predictor. The points specified above

substantiate the reason for focusing our attention to the feature extraction/selection

techniques [Devijver and Kittler, 1982].

Feature extraction techniques, such as Principal Component Analysis (PCA) and

Common Factor Analysis (CFA), attempts to extract a set of r features, where each r

features is typically a linear combination of all of the initial d features, r ≤ d. PCA is a

mathematical procedure that seeks to explain the underlying multivariate structure of the

data and transforms a number of (possibly) correlated features into a (smaller) number of

uncorrelated features called principal components [Jackson, 1991:4]. CFA is another

type of factor analysis which finds the smallest number of factors which can explain the

common variance (correlation) of a set of variables, while the more common PCA in its

full form attempts to find the set of factors which can account for all the common and

unique variance in a set of variables [Dillon and Goldstein, 1984:55-56].

Unlike feature selection, feature extraction does not reduce the complexity of the

means for data acquisition. Feature selection techniques, such as using saliency measures

[Ruck et al., 1990], [Belue, 1992], [Steppe and Bauer, 1996] and signal-to-noise ratio

(SNR) [Bauer et al., 2000], actually reduces the number of features required to a subset

of the original input features and disposing the irrelevant and/or redundant features

thereby only retaining the “effective” features [Haykin, 1999:396]. Both feature

selection and feature extraction techniques lessen the complexity of building the

 15

prediction (classification) system and can be very helpful in attaining an accurate

performance of the pattern recognition system [Devijver and Kittler, 1982].

Similarly in the statistical world of regression, this pre-processing stage is known

as factor screening. Factor screening is used as a means to identify a reduced subset of

input factors (from a larger set of candidate factors) that significantly contribute to the

observed variability in the output of a simulation model. Typically, simulation models

are complex and contain several factors. The amount of input factors (d) determines if

factor screening is required, usually when number of available runs (n) is less than d (i.e.,

n ≤ d and d ≥ 20). If the number of input factors is fairly small, factor screening might be

unnecessary. However, when the size of the input factors is large, the use of factor

screening becomes necessary in order to determine the subset of factors within the

simulation model which are most significant. Screening is generally necessary in the

initial phase of complicated simulation studies. The selection of which screening

technique to use highly depends on the number of variables in the model. Additionally,

the amount of model runs available (budget), the knowledge of the analyst in both the

technique employed and how much is known about the underlying model are all

important issues to be considered. Some of the alternative examples of factor screening

methods that have been recently developed, and are more appropriate for cases where the

number of candidate factors is large, are: (1) supersaturated designs [Mauro, 1986],

[Westfall et al., 1998], [Trocine and Malone, 2000], [Trocine and Malone, 2001], [Allen

and Bernshteyn, 2003], [Li and Lin, 2003], [Holcomb et al., 2005], and [Gilmour, 2006];

(2) iterated fractional factorial designs [Saltelli et al., 1993; 1995], [Hajas, 1998],

[Trocine and Malone, 2000], and [Melnyk et al., 2006]; (3) sequential bifurcation

[Bettonvil and Kleijnen, 1996], [Trocine and Malone, 2001], and [Kleijnen et al., 2003];

(4) controlled sequential bifurcation [Wan et al., 2003], [Sanchez et al., 2005], and [Shen

and Wan, 2005]; and (5) Trocine screening procedure [Trocine and Malone, 2001].

 16

2.4 Variance Reduction Techniques

Mathematical strategies leading to efficiency increase in simulation models and thereby

increasing precision, although not always associated with variance reduction, are called

variance reduction techniques (VRT) [Law, 2006]. The implementation of some type of

VRT can prove to be a very valuable tool (and should be applied to model aggregation) in

reducing the variance of simulation-generated estimators. It is recommended that an

initial pilot run be performed to assess the value of any VRT being considered [Law,

2006]. Usually, VRT can greatly reduce simulation run lengths and still give accurate

estimates of the desired outputs. In addition, the use of VRT can produce smaller

confidence intervals for the same number of simulation replications. Due to the

monolithic tendencies of aggregated models, engaging some type of VRT may greatly

reduce the required number of simulation runs which tend to be costly in terms of time

and money.

Variance reduction techniques were first developed in the days of computer

infancy for applications in Monte Carlo simulations or distribution sampling [Kleijnen,

1977; Law, 2006]. In order for simulationists to use these techniques in their field of

simulation, modifications to the VRT were required because of the autocorrelation

present in simulated observations and the intricate relationships between certain portions

of the stochastic model and simulated output [Donohue, 1995]. Fishman [1974]

investigated the use of common random numbers (CRN), and antithetic variates (AV) in

his simulation study. He experimented and compared the effects of no induced

correlation, inducing negative correlation (i.e., AV), inducing positive correlation (i.e.,

CRN), and a combination of the first three options. The most commonly used variance

reduction techniques in the field are CRN (also known as correlated sampling), antithetic

variates, and control variates (CV; also known as regression sampling) [Kleijnen, 1977].

The variance reduction technique of common random numbers is only applicable

when two or more alternative system configurations are being compared. Although the

simplest form of VRT, CRN is considered to be the most common and useful [Law,

2006]. The main use for CRN is when comparing different configurations it allows the

analyst to truly compare variation in the systems due to their configuration rather than the

 17

differences in the experimental conditions. To properly implement CRN, it should use

the same random number stream for a specific class of events from one configuration to

the next and should be properly synchronized, to induce positive correlations and reduce

the variances of certain output statistics. Unfortunately, CRN is not guaranteed to always

work (i.e., it may not always reduce the variance); and if it does work, there is no

knowledge of how much reduction can be gained [Law, 2006]. Since the aggregation of

the same system is what is being investigated, the use of CRN is not applicable at this

time.

The variance reduction technique of antithetic variates is applicable when

simulating a single system. Antithetic variates originated in the 1950s by Hammersley

and Morton. It uses antithetic pairs of random numbers by using complementary random

number pairs in order to induce negative correlations between runs that lead to reduced

variability of certain output statistics [Donohue, 1995]. For example, for every sample

path taken, to take its antithetic, i.e., given a path {U1,...,UM} also take {1-U1,...,1-UM}.

The AV pairs, from one replication and its complement from the next replication, must be

properly synchronized in order for AV to work properly [Law, 2006]. Most of the same

techniques used in CRN for synchronizing random numbers can be used for AV such as:

dedication of random number streams for each class of events and the use of inverse-

transform method for variate generation wherever possible. Unfortunately, CRN is also

not guaranteed to always work.

Another variance reduction technique that is used in simulation modeling is

control variates. This VRT is also applicable when simulating a single system. Unlike

the CRN and AV, the use of control variates does not affect the random number stream

assignments; but like CRN and AV, CV tries to take advantage of correlation between

random variables to attain some type of variance reduction [Donohue, 1995; Law, 2006].

The fundamental idea for using CVs is to choose one or more effective controls that

greatly influence the desired outputs. We wish to identify random variables whose

expectations are known and should be strongly correlated with the simulated output

variable of interest, in order to attain a lot of information about the output variable of

interest and make adjustments to it [Law, 2006]. Choosing an effective control can prove

 18

to be quite difficult and requires significant familiarization of the model by the

analyst/simulationist. It is especially beneficial to run a pilot run to accomplish the

control variate selection and use some type of control selection technique to determine

the subset of “good” controls [Bauer and Wilson, 1993]. In addition, performance

deterioration is possible when too many controls are selected [Nelson, 1987].

Although a very powerful tool when integrated into a simulation in gaining

precision efficiency even when implemented alone, it has been found that a combination

of these VRT methods can prove to be an even more powerful tool. Schruben and

Margolin [1978] utilized a combination of antithetic and common random number

streams as a correlation-induction strategy based on the concept of blocking to improve

their metamodel estimates. Yang and Nelson [1991] used a combination of CRN and CV

for their multiple-comparison procedures. With the incorporation of the combination

VRT, they were able to get a higher probability of finding if differences existed between

models. In Tew and Wilson [1994], they incorporated control variates along with

Schruben and Margolin’s correlation-induction strategies. Yang and Liou [1996]

combined antithetic variates and control variates to estimate the mean response in a

stochastic simulation experiment. They applied AV to produce the CV across paired

replications and showed that the induced variance is smaller than using CV alone. Thus,

at every possible opportunity, VRT should be implemented (and learned by the analyst)

since it can yield a more effective simulation, typically at a cost that is relatively minor as

compared to the total cost of the simulation [Nelson, 1990].

2.5 Model Abstraction

Benjamin et al. [1998] emphasize the fact that models of real world systems are not only

abstracted at some level, but are also highly reliant on the simulationist’s perspective.

This level of abstraction of a model regulates the level of detail in the model where the

quantity of detail is reduced with more model abstraction. Benjamin et al. [1998]

differentiate between abstraction and perspective in a model by its detail (level of

information) and its relevance from the simulationist’s and/or decision maker’s

viewpoint, respectively. This relevance is normally based on what the decision maker

 19

deems to be important in order to arrive at the goals of the simulation, which leads to

different flavors in the model abstraction process.

 Important concerns in the abstraction process involve determining the variables or

parameters that can be abstracted away for a given simulation objective and applying the

appropriate abstraction method to replace those parameters. One way to address both the

simulation time and development cost issues is to employ model abstraction techniques

[Sisti and Farr, 1998]. It seems reasonable to assume that model abstraction techniques

can lessen simulation time by reducing model complexity. Thinking of reducing model

complexity in reverse, we need to determine what part of the system being modeled

needs to be modeled in detail. The answer according to Sisti [2006] is, “those elements

which provide the greatest increases in the validity of the simulation results, while

imposing the smallest degradation of performance of that simulation.”

 While being an excellent tool to reduce simulation costs, true model abstraction

cannot be attained by simply removing complexity from an existing model. Model

abstraction techniques must preserve information that is relevant to determining the

performance of a system. In addition, information that has been removed from a complex

model must be properly replaced or represented in order for the model to stay within the

premise of the simulation goals. The question now is how does one measure complexity?

Van Lienden [1998] provides nine different types of complexity measures with

descriptions of each type as depicted in Table 2.

Table 2 - Types of Model Complexity [Van Lienden, 1998]
Complexity Type Example Indicator

Spatial Number of spatial variables and the degree to which they interact
Temporal Number of time steps incorporated into the model
Input Amount of input required to run the model
Uncertainty Number of stochastic variables incorporated into the model
Programming/Modeling Length of the model’s programming/modeling code
Interface Complexity of the user’s interaction with the model
Run-time Amount of time required to run the model
Interpretation Amount of time required to interpret the model results
Calibration Amount of data needed to calibrate the model

Although Van Lienden’s thesis pertains to linear programming with application to

the Northern California water system, his concepts of complexity measures might prove

 20

beneficial to modeling and simulation and possibly aid in the aggregation process. Of the

nine suggested complexity types, only three: spatial, runtime, and interpretation were

applicable to his research and are discussed in his thesis. Although, spatial complexity is

discussed in much more detail than the other two considered complexity types. The

measure of spatial complexity is in terms of summing the number of inflow links,

reservoirs, and demand regions, which are also used as the cluster for spatial aggregation.

Van Lienden [1998] also mentions the fact that the input and calibration complexity

measures should be positively correlated to spatial complexity as they are both likely to

increase with spatial complexity and vice versa. When all 80 variables are represented in

the model, he refers to this representation as the full model (model A), see Table 3. The

other intermediate models are at different levels of aggregation, i.e., Model B-Local

Aggregation by Regions, Model C-Aggregation by River System, Model D-Aggregation

of Eastern and Western Sacramento Valley, Model E-Aggregation by Group Types and

Model F is the fully aggregated model.

Table 3 - Test Case Spatial Complexities [Van Lienden, 1998]
Case # Inflow Links # Reservoirs # Demand Regions Spatial Complexity

A 40 25 15 80
B 28 19 13 61
C 17 13 12 42
D 12 7 7 26
E 4 2 2 8
F 3 1 1 5

The model run-time complexity in Van Lienden’s thesis isn’t measured with the

typical length of processing time a model is run in a computer. Instead, run-time

complexity is measured in the context of linear programming as to the number of

decisions required of the optimization model and the number of iterations the model takes

to reach a solution. With the continuing advent of faster computers, model run-time, in

terms of processing times, is not much of a realistic concern for selecting models of a

respectable size. However, in monolithic combat modeling scenarios, especially at the

higher-levels, model run-time can still be a major factor for consideration due to the

sensitive nature of war. The last complexity type Van Lienden discusses is interpretation

time. This is the quantity of time required to evaluate the model results and understand

 21

their significance to the overall goal of the model. Typically, the evaluation time is

lessened at the higher-level model; however, several assumptions must be stated up front,

especially for the model aspects that have been abstracted away.

 The nine different complexity types may not be all relevant to our research either,

such as calibration and interpretation complexities, but certainly spatial and temporal

might be worth delving into. Temporal complexity is already an aspect that is used in the

simulation of campaign level models. Of course, each complexity type will be

investigated for applicability into the area of combat modeling, specifically in CID, and

abandoned if deemed not pertinent. Applicable complexity types from Van Lienden

[1998] and a similar grouping of “resolution aspects” described in Davis et al. [1997]

(see Figure 7) that are appropriate for combat modeling will be compiled for use in our

research.

Resolution

Entity Attribute Logical
dependency

Process Spatial Temporal

Resolution

Entity Attribute Logical
dependency

Process Spatial Temporal

Figure 7 - Aspects of Resolution [Davis et al., 1997, Fig E.1]

In terms of spatial complexity as will be applied to our research, we envision its

application to model aggregation as depicted in Figure 8, where a full model is built

including all the outputs from different lower-level models and use those as inputs into

the higher-level model. As the subsystems (components) are progressively aggregated its

corresponding spatial complexity will also decrease. Subsystem aggregation can occur

over one or more aspects of resolution.

 22

Full model (consider as truth) – no aggregation (take all lower-level
outputs as higher-level inputs)

S
pa

tia
l c

om
pl

ex
ity

Reduced model - full aggregation (all subsystem aggregated)

..

.

Intermediate models – intermediate aggregation (some subsystem
aggregated)

..

.

Figure 8 - Spatial Complexity

Now how is the “best” level of spatial complexity determined? This part is

depicted in Figure 9. From Figure 8, we consider the higher-level model output with the

full model as truth. It is assumed in Van Lienden’s thesis that, given adequate data and

information, the most complex formulation (full model) will be the most accurate (truth)

representation of the desired output and therefore can be used as a benchmark for

evaluating other formulations. It makes perfect sense that a certain amount of

aggregation is acceptable with small inaccuracy but with more aggregation the model

may produce unacceptable errors. Error is then defined as the difference between the

truth and the aggregated higher-level model output. The greater the difference is from

the truth, the more inaccuracies in the model is realized. A user defined maximum

acceptable error can be used to determine what the “best” model should be and therefore

determine its corresponding spatial complexity. If other complexity types are considered

simultaneously with spatial complexity, a method for weighting the different complexity

types must also be established [Van Lienden, 1998]. Unfortunately, Van Lienden doesn’t

expound on how this can be done. One can resort to the weighting scheme that is

established based on the decision maker’s goals for the simulation model. As mentioned

earlier, some of the complexity types are correlated and therefore needs to be considered

in the weighting scheme, i.e., complexity types that are positively correlated cannot have

weights that are contradicting.

 23

E
rro

r

Spatial Complexity
0

100%

100%
(Full Model)

Idealized line

Aggregated Model
output line

User defined
maximum acceptable

error
“Best”
Model

E
rro

r

Spatial Complexity
0

100%

100%
(Full Model)

Idealized line

Aggregated Model
output line

User defined
maximum acceptable

error
“Best”
Model

Figure 9 - "Best" Model Determination

Not only is the method of aggregation important, but also how do we determine

what to aggregate? A possible solution is by determining component saliency [Van

Lienden, 1998]. Less important components can be aggregated together, while more

salient components may need to be modeled as is, without aggregation. Component

saliency will depend on the specific output of interest, that is, for a specific simulation

objective, there will be certain output(s) of interest and the saliency of components will

depend on this particular objective(s). [Bauer et al., 2000] defines feature (component)

saliency measures, in the context of multi-layered perceptron feed-forward artificial

neural network, as a way to calculate the efficacy of features and a method to rank order

the features. It might be that the aggregation of homogeneous components is easier to

accomplish, but what about non-homogeneous components? How do we combine their

information and/or data into one? Also, do we aggregate within or between models? The

issue of aggregation within or between models (in terms of mission level models) arises

when more than one lower-level model is being considered for input into a higher-level

model. If only one lower-level model needs to be incorporated into a particular higher-

level model, then the within model output/input needs to be considered for aggregation.

On the other hand, when multiple lower-level models are to be incorporated in a higher-

level model, then both within and between model output/input aggregations needs to be

considered.

 24

According to Sisti and Farr [1996], of all the enabling technologies in simulation

science, model abstraction is possibly the most important enabling technology. Zeigler et

al. [2000] defines abstraction as the “method or algorithms applied to a model to reduce

its complexity while preserving its validity in an experimental frame.” Similarly, Frantz

[1995] and Frantz & Ellor [1996] defined model abstraction as “a methodology for

reducing the complexity of a simulation model while maintaining the validity of the

simulation results with respect to the question that the simulation is being used to

address.” This implies that model abstraction cuts down on the complexity of the

simulated system down to its vital parts and processes by means of a series of

conceptualizations, selection of significant processes, and identification of the associated

parameters [Pachepsky et al., 2006].

The supposed risk of eliminating certain significant processes or features

frequently causes the analysts to applying rather complex models that simulate almost all

the detailed aspects of the simulated system, resulting in monumental data-collection and

modeling requirements. Often, the detailed features, events and processes characterized

in these complex models may have limited influence on the performance of a specific

output. This in turn causes extreme amount of time spent on data collection and

computations as well as difficulties in interpreting simulation results and conveying the

simulation approach to both technical and lay persons. A well-constructed model

abstraction produces a simpler model that provides a more comprehensible representation

of the problem and affords more time and effort to be focused on the more important

aspects, rather than getting lost in the minutiae. Model abstraction techniques that can

streamline and accelerate the evaluation of complex systems without considerable loss of

accuracy would facilitate the synthesis and review of performance assessments

[Pachepsky et al., 2006].

Abstraction is crucial in the construction of models for simulation. It is a general

process that is composed of several simplification methods. The first summary of model

simplification techniques was composed in Zeigler [1976]. The four categories of model

abstraction techniques are:

 25

 dropping unimportant parts of the model;

 replacing some part of the model by a random variable;

 coarsening the range of values taken by a variable;

 and grouping parts of the model together.

Zeigler’s [2000] more recent abstraction methods are shown in Table 4. Abstraction

techniques enable the modeler to perform more rapid analysis and wider ranging

exploration at lower cost. Several of these abstraction methods depend on the structure

of the original model in order to attain an appropriate “lumped” model. The

homomorphism (a mapping preserving step-by-step state transition and output) concept

then provides a measure for valid simplification. Error is introduced when exact

homomorphism is not reached. However, the abstraction may still be applicable if the

error does not increase so as to surpass the tolerance of goodness of fit. The simulationist

must consider the advantages of model abstraction against the costs (e.g., benefits in

reduced run-time and memory requirements may be accompanied by certain loss of

predictive accuracy) [Zeigler et al., 2000].

Table 4 - Some Common Abstractions [Zeigler et al., 2000:333, Table 1]
Simplification method Brief description Affects primarily

Aggregation

Combining groups of components into a single component
that represents their combined behavior when interacting
with other groups

Size and resolution

Omission Leaving out: Components, Variables, or interactions Size, Resolution,
or Interactions

Linearization Representing behavior around an operating point as a linear
system Interactions

Deterministic=>Stochastic

Replacing deterministic descriptions by stochastic ones can
result in reduced complexity when algorithms taking many
factors into account are replaced by samples from easy-to-
compute distributions

Interactions

Stochastic=>Deterministic Replacing stochastic descriptions by deterministic ones, e.g.,
replacing a distribution by its mean Interactions

Formalism transformation
Mapping from one formalism to another, more efficient one,
e.g., mapping differential equation models into discrete
event models

--

 26

Frantz [1995] and Frantz & Ellor [1996] took a similar approach to their model

simplification techniques and introduced a comprehensive taxonomy of these techniques

presented in Figure 10. They claim that several of these techniques can be applied

simultaneously. The metamodeling simplification technique will be heavily explored in

this research, specifically by means of artificial neural networks.

The modeling and simulation community has used metamodels to learn the

behavior of computer simulations for over forty years. Parametric polynomial response

surface approximations have been the most popular technique used for metamodeling

[Barton, 1992]. Kilmer [1994] showed that in the application of the inventory problem,

regression metamodels of the type typically used in response surface methods did not

perform as well as the artificial neural network (ANN) metamodels, which Nasereddin &

Mollaghasemi, [1999] and Fonseca et al. [2003] also echoed in their articles; but for

completeness, we will also look at ordinary least squares (OLS) regression as an alternate

aggregation technique.

Model

Abstraction Techniques

Model
Boundary Modification

Model
Behavior Modification

Model
Form Modification

State Temporal Function Entity

Unit
Advance

Event
Advance

By
Function

By
Structure

Behavior
Aggregation

Causal
Decomposition

Repeating
Cycles

Numeric
Representation

Explicit
Assumptions Derived

Hierarchies
of Models

Delimit
Input Space

Approximation Boundary Selection
by Influences

Causal
Approximation

Model Sensitivity
Analysis

Look-up
Tables

Random
Number Generation

Linear Function
Interpolation Metamodeling

Model
Abstraction Techniques

Model
Abstraction Techniques

Model
Boundary Modification

Model
Boundary Modification

Model
Behavior Modification

Model
Behavior Modification

Model
Form Modification

Model
Form Modification

StateState TemporalTemporal FunctionFunction EntityEntity

Unit
Advance

Unit
Advance

Event
Advance

Event
Advance

By
Function

By
Function

By
Structure

By
Structure

Behavior
Aggregation

Behavior
Aggregation

Causal
Decomposition

Causal
Decomposition

Repeating
Cycles

Repeating
Cycles

Numeric
Representation

Numeric
Representation

Explicit
Assumptions

Explicit
Assumptions DerivedDerived

Hierarchies
of Models

Hierarchies
of Models

Delimit
Input Space

Delimit
Input Space

ApproximationApproximation Boundary Selection
by Influences

Boundary Selection
by Influences

Causal
Approximation

Causal
Approximation

Model Sensitivity
Analysis

Model Sensitivity
Analysis

Look-up
Tables

Look-up
Tables

Random
Number Generation

Random
Number Generation

Linear Function
Interpolation

Linear Function
Interpolation Metamodeling

Figure 10 - Taxonomy of Model Abstraction Techniques [Frantz, 1995, Fig 2]

 27

Simulation models of new or existing real systems are frequently employed to

make decisions on changes to the system design. Analysts use the simulation model as a

proxy because it is not viable to build multiple prototype versions of the real system; the

proposed system is too new, extremely hypothetical, or non-existent. Often the models

are fairly intricate, therefore model simplification techniques such as a mathematical

model of the simulation model, metamodels, are implemented [Kleijnen, 1987].

Metamodels can more easily demonstrate the basic characteristic of the more intricate

simulation model. It may also be useful in identifying significant parameters (features)

that are most influential to the system performance (i.e., pre-processing such as feature

dimensionality reduction). Replacing a more complex module(s) of a larger, more

complicated simulation model with a metamodel can be a very valuable approach,

especially if the original model is just one component of the complex system.

Incorporation of a metamodel into the complex simulation system for some or all of its

components can greatly reduce the size and execution time of the large complex system

[Barton, 1992].

Barton [1994] lists related metamodeling techniques implemented in the field,

such as spatial correlation models, splines, kernel smoothing, frequency-domain

approximations, and radial basis functions (RBFs). Some application of simulation

metamodels were done in: Kilmer [1994; 1996; 1997] employing the feed-forward ANN

(FANN), Gordon et al. [1994] used second-order regression metamodel for a spacecraft

in orbit, Jorch et al. [2001] generated look-up tables and RBF ANN for the Space Based

Radar, and Alam et al. [2004] also explored the multilayer FANN in the context of

investigating different experimental designs for a deterministic combat model. One

noteworthy result of Kilmer’s [1994] dissertation showed that using separate networks

for different outputs produced better predictions than combined networks. Also,

networks trained on individual observation data had better generalization performance,

using the mean absolute error (MAE) criteria, than networks trained on the averages of

the simulation output replications. The second point actually makes sense since this also

provides more data points for training the ANN. However, on the first point, using

 28

separate or one network all depends on how persistent the analyst is in the construction of

the ANN model to build the best representation of the simulation model.

As previously discussed, ANN will be extensively used as the metamodeling tool

for use in the aggregation of the simulation model. The three ANN that will be

implemented for the aggregation process of the prediction problem will be feed-forward,

radial basis function, and the generalized regression neural network (GRNN), which are

the recommended ANN prediction problem tools by StatSoft [2007]. The ANN with the

smallest root mean square error (RMSE) will be considered the best neural network

representation of the simulation model and will be used as the ANN metamodel of the

lower-level simulation models. The main reason for choosing the RMSE as the measure

of performance for the ANN is due to its ability to incorporate a measure of both the

variance and the square of the bias of the prediction errors [Alam et al., 2004]. The

Direct Method (DM) and the three different ANN methods, along with the RMSE

calculation, will be discussed in more detail later in the methodology chapter.

2.6 Modeling and Simulation Software Tools

Simulation software provides organizations the capability to effectively capture essential

aspects of vital operations. Investing in the use of simulation has been shown to be an

important part of continuous decision-making and calls for tools that can integrate data,

models, and graphics from many different sources.

 As part of an effort to help the Air Force analysis community to consolidate their

efforts, a set of standard toolkit of models were established, called Toolkit Models

contained in the Air Force Standard Analysis Toolkit (AFSAT), as depicted in Figure 11.

These models are considered the Air Force standard for modeling a variety of different

combat activities [AFI 16-1002, 2000]. In addition to modeling combat activities,

AFSAT is recommended in analytical assessments concerning strategic planning,

capability requirements, and weapon systems development, acquisition, and testing [AFI

16-1003, 2006:1]. The AFSAT divides simulation into three levels: Campaign, Mission,

and Engagement. Each level of the hierarchy contains the particular models that are

 29

being used to model a specific level of simulation currently being used for combat

models.

CFAM AMOS
LCOM THUNDER

JIMM EADSIM SEAS
SPAAT SUPPRESSOR SCOPES

BRAWLER MIL‐AASPEM II
GIANT JTEAM ESAMS MOSAIC

GTSIMS SHAZAM JSEM RADGUNS

HUNDREDS OF ENGINEERING MODELS
(NOT IN THE TOOLKIT ‐ BY DESIGN)

MISSION

CAMPAIGN

ENGAGEMENT

SPECIALTYAGGREGATION

RESOLUTION

Figure 11 - Air Force Standard Analysis Toolkit (AFSAT)

AFI 16-1003 [2006] lists the specifics on the procedures and criteria for entering

new models into the AFSAT and for retiring models from the AFSAT. It also covers the

policies and procedures that govern the management of the AFSAT. For more details on

the specific models that are contained in each level, such as THUNDER or LCOM in the

Campaign level of Figure 11, an updated list and their respective descriptions should be

reviewed regularly for currency. A brief description of each of the models in the

AFSAT, compiled from the AF/A9 - Studies & Analyses, Assessments, and Lessons

Learned website, is provided in Table 5.

 30

Table 5 - AFSAT Details

Model Acronym Level Brief Description Organizational
Manager

Combat Forces Assessment
Model CFAM Campaign

- air and ground large-scale
linear program optimizer
- addresses resource
allocation problems
- consists of the Air Strike
GAMS module and a
Visual Basic GUI

HQ AF/A9FC

Air Mobility Operations
Simulation AMOS Campaign

- supports air mobility
analysis requirements
- generates a feasible
schedule of AMC assets
- provides analytical insight
to the feasibility of the air
mobility portion of a
TPFDD

HQ AMC/A59

Logistic Composite Model LCOM Campaign

- large-scale linear program
optimizer
- models details of
reliability and maintenance
- addresses manpower and
other logistical
requirements

AFMA/MAIP

THUNDER -- Campaign

- stochastic model that
supports modeling 2-sided
large-scale military ops
- provides insight into the
full range of potential
outcomes of a military
campaign

HQ AF/A9A

Joint Integrated Mission Model JIMM Mission

- discrete-event, language-
driven, general purpose
simulator
- used to generate complex
tactical environments for
aircraft-related analysis or
testing

US Navy
JIMM Model
Management

Office (JMMO)

Extended Air Defense
Simulation EADSIM Mission

- models air, space and
missile warfare ranging
from FvF to MvM
- data-driven, physics-
based, distinct-entity
stochastic simulation
capable of Monte Carlo
iterations

US Army
SMDC-BL-ST

System Effectiveness Analysis
Simulation SEAS Mission

- agent-based MvM
stochastic modeling tool
- typically used for military
utility analyses of present
and future space systems to
explore combat
outcome sensitivities to
C4ISR, CONOPS, and
force structures

SMC/XDIA

Sensor-Platform Allocation
Analysis Tool SPAAT Mission

- DOS-based, low-budget,
linear program optimizer
- used primarily for
screening ISR
architectures for further
exploration in THUNDER,
CFAM, and other campaign
models

HQ AF/A9FM

 31

SUPPRESSOR -- Mission

- used for CONOPS and
electronic combat analysis
- used to simulate a raid of
strike and support
aircraft vs. enemy
Integrated Air Defense
System (IADS)
- supported by several 1v1
and engineering simulation
models

ASC/ENMM

SCOPES -- Mission

- provides comprehensive
M&S of orbital objects,
missiles, ground sensors,
and their relationship to the
earth
- Space Command’s
premier M&S tool for
space analysts, mission
planners, educators,
trainers, and warfighters to
aid in Space Situational
Awareness (SSA)

HQ SWC/XID

BRAWLER -- Engagement

- simulates air-to-air
combat between multiple
flights of aircraft in both
visual and beyond-visual
range (BVR) arenas
- emphasis placed on
simulating cooperative
tactics and on capturing the
importance of situation
awareness

HQ AF/A9FM

Man-In-Loop Air-to-Air
System Performance
Evaluation Model II

MIL-AASPEM II Engagement

- a tactical real-time air
combat model for the
evaluation of 1v1 through
MvM players
- used to evaluate weapons
system performance and
effectiveness in air-to-air
engagements, tactics
development, etc.

ASC/HPMT

GPS Interference & Navigation
Tool GIANT Engagement

- used to determine
navigation system
performance and its impact
on operational
effectiveness, principally in
an electronic combat
environment
- is PC-based and runs
much faster than
real-time

SMC/TDXM

JMASS Threat Engagement
Analysis Model JTEAM Engagement

- simulates engagement
between a single electro-
optical /infrared (EO/IR)
threat missile and one or
more target aircraft
equipped with infrared (IR)
countermeasure flares

AFIWC
453dEWS/EWA

 32

Enhanced Surface-to-Air
Missile Simulation ESAMS Engagement

- is a commonly used SAM
simulation supporting AF
R&D and acquisition
programs
- models a 1v1 engagement
of a Radar Frequency (RF)
SAM against an air
breathing penetrator or
ballistic target
- gauges the survivability
effectiveness of aircraft
maneuvers, ECMs and
defensive expendables

ASC/ENMM

Modeling System for
Advanced Investigation of

Countermeasures
MOSAIC Engagement

- is a 1v1 digital modeling
environment
- simulates end-to-end
engagements between
advanced IR missiles and
aircraft equipped
with advanced IRCM

AFRL/SNJW

Georgia Tech Simulations
Integrated Modeling System GTSIMS Engagement

- is a FvF model
- used to analyze aircraft
survivability against SAM
or other EO/IR guided
missile threat in an IRCM
and cluttered environment

Georgia Tech
Research
Institute

SHAZAM -- Engagement

- is a mathematical model
that evaluates the
effectiveness of an air
intercept missile against an
air target

ASC/ENMM

Joint Service Endgame Model JSEM Engagement

- is a simulation program
that evaluates terminal
effectiveness (endgame) of
a fragmenting munition
against a target (usually
airborne)

NAVAIR-WD

RAdar Directed GUN System RADGUNS Engagement

- is a 1v1 engagement
between aircraft and Air
Defense Artillery (ADA)
threat systems
- is used to evaluate the
effectiveness of ADA
gun systems against
penetrating aerial targets
for weapon lethality and
aircraft susceptibility
/vulnerability/survivability

NAVAIR
/Survivability

Integration
Branch

Due to the size and complexity of the models in the AFSAT, the models

contained within the collection take a tremendous amount of time to run and the learning

curve is quite steep even for mere familiarization of these models. Thus, not all models

built in the military use the tools specified in the AFSAT. In addition, for the purpose of

this research, obtaining pre-built hierarchical AFSAT models, proved to be more difficult

than expected due to lead time, sensitivity and proprietary issues. In order to achieve any

implementation required for the proof of concept application in this research, a more

https://www.my.af.mil/gcss-af/USAF/AFP40/Attachment/20070129/MOSAIC_Briefing_Aug11_2004.pdf�
https://www.my.af.mil/gcss-af/USAF/AFP40/Attachment/20070129/MOSAIC_Briefing_Aug11_2004.pdf�
https://www.my.af.mil/gcss-af/USAF/AFP40/Attachment/20070129/MOSAIC_Briefing_Aug11_2004.pdf�
https://www.my.af.mil/gcss-af/USAF/AFP40/Attachment/20070129/GTSIMS.pdf�
https://www.my.af.mil/gcss-af/USAF/AFP40/Attachment/20070129/GTSIMS.pdf�
https://www.my.af.mil/gcss-af/USAF/AFP40/Attachment/20070129/JSEM_overview.pdf�

 33

accessible type of constructive simulation models built in Arena were examined. Next,

we provide a brief description of the Arena discrete event simulation software. The

specific application model descriptions are described in Chapters 4 and 5, for the Flying

Training Model and ALS Sortie Generation Model, respectively.

Arena®

Arena is a flow oriented, general-purpose visual simulation language. It is well suited in

flow-oriented settings like manufacturing, insurance, or information flow situations. It

provides modeling flexibility, enabling analysts to capture system dynamics. Arena also

has the capability to simulate objects including process logic, data, performance metrics,

and animation that model components of the real system.

 The design of the core product engine provides robust modeling and integration

capabilities and makes Arena easy to learn and use. It has been enhanced by the addition

of many functional modules, full visualization of model structure and parameters,

improved input and output analysis tools, run control and animation facilities, and output

reporting. Additionally, users can find ease and familiarity through Arena’s

compatibility with Microsoft® products and Matlab®. The Matlab-Arena compatibility

will come in especially handy in the analysis portion in this research effort.

 Arena is developed using the SIMAN language. When an Arena model is

created, it is implemented in SIMAN code. For someone who is already an expert in the

SIMAN language, this will facilitate in understanding the error messages, which appear

occasionally. However, understanding the structure of SIMAN in great detail is not

necessary to use Arena. A high level graphical front end for SIMAN, Arena models are

built by placing icons onto a drawing board and then linking these icons or blocks

together to define model logic. It delivers the capabilities needed for analyzing all types

of systems by employing an object-oriented design for entirely graphical model

development.

 34

III. Aggregation Methodology Development

3.1 Overview

The initial approach used in this research was the use of realistic simulation models,

across various applications, to implement model aggregation techniques, involving

feature selection/extraction, VRT, and several other metamodeling methods to include

regression and artificial neural networks. It is important to remember that the

construction of the simulation model in this research is a significant step for the

generation of data. For the purposes of testing the techniques proposed, a flying training

model built for another study was modified to suit the needs of the research effort. Also,

another simulation model, the sortie generation process model by Paul Faas [Faas, 2003],

was examined in order to apply the proposed aggregation methodologies. However,

before applying the aggregation methodologies to these two application models, the ANN

aggregation methodology using the feed-forward and radial basis function (RBF) ANNs

were tested on the Law and Kelton [1991] inventory problem data for feasibility. The

actual data used for the ANN manipulation were taken from the simulation results of the

same inventory system from Kilmer [1994].

 This research presents a logical and effective solution methodology for evaluating

and conducting aggregation of large hierarchical simulation models with applications to

real world models to clearly demonstrate the approach and its benefits to the overall

simulation goals. Often aggregation is viewed and implemented through a logical

grouping of entities within a simulation (perhaps based on physical considerations of the

systems being modeled). Our approach takes a broader and more objective (using a

mathematical framework) view of the entire logical and structural structure of a

simulation and specific processes modeled in formalizing procedures to more

appropriately and accurately capture information for aggregation. This approach better

defines the issues and challenges involved with the exchange of information between

simulation models at different hierarchical levels. Our novel use of sophisticated

metamodeling techniques in conjunction with our well defined structural and logical

aggregation (or decomposition) lays the foundation for eventually replacing very large

 35

aggregated models with a series of interconnected metamodels, capable of providing

decision makers with accurate system performance results in a fraction of the time used

with original simulation.

 Keeping in mind the focus of hierarchical simulation, we not only want to capture

the mean of the simulation, but we also want to capture a better representation of the

underlying distribution of the simulation at the higher-level by using different

aggregation methods. This concept of replacing the lower-level model outputs Y with an

alternate aggregation method and capturing its effects on the higher-level model output Z

is best depicted in Figure 12. In Figure 12, a sample of a structural aggregation (within-

a-model) and logical aggregation (within-a-level) using the first two aggregation

methods, M1 and M2, as implemented in the lower-level and its effects on the output of

the higher-level model is illustrated. An in depth discussion of the steps involved in

Figure 12 is the main focus of this aggregation methodology chapter.

DM: Direct Method
Output

Z

Y

Y

M1: E(Y)=Ŷ

M2: Normal(Ŷ, Var(Ŷ))

5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CDF Plot

0.00

0.05

0.10

0.15

0.20

0.25

Frequency-Comparison Plot

5.96 6.09 6.23 6.36 6.49 6.62 6.75

Submodel

LL Model /
Submodel

Submodel

HL Model

HL Model Output Analysis

LL Model/ Submodel Output
Aggregation

LL Model LL Model

HL Model

(Structural Aggregation)

Z

Y

(Logical Aggregation)

-Error Comparison
-K-S test

...

Submodel

cdf comparison histogram comparison

Figure 12 - Aggregation Methodology Development

 36

This chapter is built upon the discussion of the methodology used in this research.

The organization of this chapter is as follows. Section 3.2 discusses the ANN feasibility

study on the Law and Kelton [1991] inventory problem. In Section 3.3 the proposed

overall aggregation process is outlined. In Section 3.4 the methodology to

mathematically represent and decompose a discrete event simulation model for

aggregation is described along with a sample problem. Next, the method for determining

the number of replications in a simulation model to obtain a desired precision accuracy

for output(s) of interest is described in Section 3.5. The eight different aggregation

methodologies are detailed in Section 3.6. Section 3.7 describes the set-up for the

training and testing data for use in the regression and ANN methods. Finally, Section 3.8

provides a description of how the lower- and higher-level model outputs are compared

for evaluation and specifies the performance estimation technique that will be employed

to determine the accuracy of the metamodeling techniques used.

3.2 Experimental Toy Model: (s, S) Inventory System

The inventory system used for the initial toy model is a probabilistic lot size-reorder point

system, where s = reorder point quantity, and S = order up to quantity, with a time

horizon of 120 months. There are several input and output parameters involved in this

Law and Kelton [1991] sample problem, but only the data taken from Kilmer’s [1994]

Appendix A, Tables A1 and A2, with the 4-input: s, d, k, and w (where d = S-s, d: reorder

quantity when I = s; I: inventory level; k: set-up cost; w: k/u; u: cost of backlog orders)

were used for the ANN testing. These four input parameters were allowed to vary and

the remaining parameters were considered constant. The two Kilmer simulation outputs

are C (average cost) and Var (C) (variance of C). The combined data used for the

initial ANN experiment is listed in Table A1, Appendix A.

The data in Table A1 were used in training and testing the feed-forward and radial

basis function, the two initial ANN used for the prediction problem. The 234 data points

were randomly divided into training (164 exemplars) and testing (70 exemplars) datasets

and iterated 100 times. One of Kilmer’s [1994] dissertation findings recommended

 37

building individual networks per output, thus two 4-1 (input-output) networks were built

for the two outputs C and Var (C). To view the Matlab code, see Appendix A.

Similarly, one of the powers of the neural network is being able to “reverse” the network

[Nasereddin and Mollaghasemi, 1999] and code the original outputs as the new inputs

and the old inputs as the new outputs; thus, four 2-1 (input-output) networks were built

for the four outputs s, d, k, and w. This was deemed important for investigation in order

to determine if the original inputs can be reproduced using network outputs. An inquiry

into knowing what the input parameters need to be set to, in order to achieve certain

output values, can be quite difficult to accomplish in the simulation model without having

to rebuild the entire simulation model. This “reverse” task is not quite as difficult to

accomplish using ANN.

The main goal of the ANN coding in Matlab is not necessarily to build the best

network structure for prediction; rather, to ensure that the process can be executed using

the proposed ANN methodologies. The “fine tuning” of the parameters will be

investigated more thoroughly with the two applications models to identify their optimum

ANN topology (best combination of parameters). Tables 6 and 7 depict the initial results

achieved for the two ANN methods.

Table 6 - Inventory Data Radial Basis Function ANN MAE/MAPD
Data Set ANN Structure Output MAE MAPD

Trng
4-1 C 19.3

13.3%

Test
4-1 C 19.6

13.6%

Trng
4-1 Var(C) 1.0

62.5%

Test
4-1 Var(C) 1.1

73.3%

Trng 2-1 s 14.0 36.4%
Test 2-1 s 14.0 36.4%
Trng 2-1 d 16.6 39.7%
Test 2-1 d 16.7 39.8%
Trng 2-1 k 14.3 30.4%
Test 2-1 k 14.7 31.4%
Trng 2-1 w 4.0 38.5%
Test 2-1 w 4.1 40.6%

 38

Table 7 - Inventory Data Feed-forward ANN MAE/MAPD
Data Set ANN Structure Transfer Functions Output MAE MAPD

Trng
4-5-5-1 Logsig-Logsig-Purelin C 21.6

14.9%

Test
4-5-5-1 Logsig-Logsig-Purelin C 24.3

16.8%

Trng
4-5-5-1 Logsig-Logsig-Purelin Var(C) 0.24

15.0%

Test
4-5-5-1 Logsig-Logsig-Purelin Var(C) 1.8

120.0%

Trng
4-5-5-1 Tansig-Tansig-Purelin C 22.4

15.5%

Test
4-5-5-1 Tansig-Tansig-Purelin C 24.5

17.0%

Trng
4-5-5-1 Tansig-Tansig-Purelin Var(C) 0.23

14.4%

Test
4-5-5-1 Tansig-Tansig-Purelin Var(C) 1.3

86.7%

Trng 2-3-3-1 Logsig-Logsig-Purelin s 12.6 32.7%
Test 2-3-3-1 Logsig-Logsig-Purelin s 13.6 35.3%
Trng 2-3-3-1 Logsig-Logsig-Purelin d 16.2 38.8%
Test 2-3-3-1 Logsig-Logsig-Purelin d 16.3 38.8%
Trng 2-3-3-1 Logsig-Logsig-Purelin k 17.2 36.5%
Test 2-3-3-1 Logsig-Logsig-Purelin k 17.1 36.5%
Trng 2-3-3-1 Logsig-Logsig-Purelin w 3.8 36.5%
Test 2-3-3-1 Logsig-Logsig-Purelin w 4.0 39.6%
Trng 2-3-3-1 Tansig-Tansig-Purelin s 10.7 27.8%
Test 2-3-3-1 Tansig-Tansig-Purelin s 11.8 30.6%
Trng 2-3-3-1 Tansig-Tansig-Purelin d 16.2 38.8%
Test 2-3-3-1 Tansig-Tansig-Purelin d 17.0 40.5%
Trng 2-3-3-1 Tansig-Tansig-Purelin k 16.9 35.9%
Test 2-3-3-1 Tansig-Tansig-Purelin k 18.0 38.5%
Trng 2-3-3-1 Tansig-Tansig-Purelin w 3.8 36.5%
Test 2-3-3-1 Tansig-Tansig-Purelin w 4.0 39.6%

The parameters used for the RBF ANN were: mean squared error goal = 0.001

and an RBF spread of 1.0. An ANN structure of 4-1 in Table 6 indicates 4 inputs and 1

output. In Table 7, the number of hidden layers and the number of nodes in a specific

hidden layer were manipulated in the feed-forward architecture. A 4-5-5-1 structure

indicates 4 inputs, 2 hidden layers with 5 nodes in each hidden layer, and 1 output. The

corresponding transfer function follows the same structure. A Logsig-Logsig-Purelin

transfer function in Table 7 indicates a Logsig transfer function in each of the two hidden

layers and the Purelin corresponds to the transfer function of the single output. For both

Tables 6 and 7, the output measures of performance evaluation were based on the mean

absolute error (MAE) and the relative error measure of mean absolute percent deviation

(MAPD). A more detailed discussion on how to calculate these measures is discussed in

Section 3.8. An important finding in accomplishing the Matlab runs was ensuring that

the randomized data for the individual networks were synchronized; that is, ensuring that

 39

the same set of training and test data were used every single iteration in order for the

outputs to stay in sync.

Kilmer’s [1994] dissertation finding of comparing individual ANN’s per output or

multiple outputs were also tested. The single neural network per output produced lower

MAEs than the multiple outputs ANN. That is, using the same parameter structure for

both single and multiple output models, without consideration of finding the best

structure for either models. Each model, the single and multiple output structure, could

be modeled with their own specific “best” parameters to really compare the effects of the

output structure. As previously mentioned, best parameter determination was not

paramount for this implementation, thus this will be accomplished for the actual real-

world applications. The two-sample t-test and the Wilcoxon rank-sum test were used for

this comparison. Another comparison that could be accomplished is a comparison

between the different ANN architectures, such as comparing a feed-forward ANN to the

RBF ANN, in addition to comparing the different transfer functions and number of

hidden layers for the feed-forward architecture. An important factor to keep in mind is

the fact that certain ANN architecture might work better than others depending on the

type of data that is being analyzed. Therefore, just because a certain architecture works

better, as in the case of the RBF for the inventory data (at least for C), this doesn’t

necessarily mean it will always be the norm. Although, the RBF architecture did run at

least ten-fold faster than any of the feed-forward architectures.

3.3 Proposed Aggregation Process

The proposed overall aggregation procedure is best summarized in Figure 13. Figure 6 is

a closer view of Step 2 from Figure 13 and is discussed in more detail later in Section 3.6.

There is no universal method to solve every problem and the process prescribed here is

just that, one way to properly capture the model aggregation process. The analyst must

choose based on the advantages and disadvantages of particular methods. In most cases,

the different statistical procedures selected in this research have been extensively used

and explored successfully in the field, but the combination of these different techniques

 40

into one continuous process for model aggregation purposes is what will make the

proposed process comprehensible and executable.

Step 0

Step 1

Step 3Performance
Estimation

Step 2

A

B

C

sA

sB

ts

A

B

C

sA

sB

ts

Figure 13 - Overall Model Aggregation Procedure

Figure 13 outlines a 3-step process with the additional assumption that a set of

hierarchical simulation models are already in existence (Step 0) before executing the

aggregation procedure. Step 1 consists of identifying candidate submodels (entities,

events, and/or processes) for aggregation, which is discussed in detail in Section 3.4.

Step 2 is performing the different aggregation techniques detailed in Section 3.6. For the

final step, Step 3, in order to determine the accuracy of the metamodeling techniques,

some form of performance estimation has to be established. The recommended

performance estimation measures are detailed in Section 3.8.

In order to perform aggregation of large hierarchical simulation models, the

question of “what” (Step 1) and “how” (Step 2) needs to be addressed. The “how” part of

the aggregation process will be addressed in more detail in Section 3.6 by means of

 41

different statistical techniques such as variance reduction, regression, ANN, etc. To

facilitate the “what” portion of the aggregation process the hierarchical simulation model

needs to be characterized in a mathematical format to aid in determining what portion of

the entire simulation model can be aggregated; this is discussed in more details in the

next section.

 As depicted in Figure 6, before implementing any of the aggregation techniques,

we can improve statistical fidelity on the prediction by performing some pre-processing

of the inputs and outputs of our higher resolution models (in this example Mission

Level). Looking specifically at an ANN approach, before representing the entire feature

set (the individual inputs from the higher-resolution models passed to the lower-

resolution model) into the parameterized aggregation function, it is often beneficial to

perform different combinations of initial pre-processing before the data is transformed

into some new representation to improve the prediction process. Next we describe some

of the techniques that are typically used for data pre-processing: normalization,

standardization, and PCA. These pre-processing methods may lead to improved overall

performance of the simulation and its metamodel.

 Variables (features) may have different scales although they pertain to similar

objects. Consider for instance an exemplar (sample data) x = [x1, x2] where x1 is a

measure of width in feet and x2 is some height measured in meters. Both can be

compared, added or subtracted, but it would be inappropriate to do so before appropriate

transformation (scaling) of the data. This is the motivation for using normalization

and/or standardization which is discussed next.

Normalization

The data modification in this method is to individually normalize each set of ith feature

values into some specified range. Let i be fixed and use the linear transformation Li on

the ith component range [xmin(i), xmax(i)] and map each sample into the range [a, b].

Mathematically, normalization is expressed as

 42

()
() ()min()*

max() min()

i i
i

i i

x x
x b a a

x x

−
= ∗ − +

−
 (3.1)

where xi
* is the transformed data, b is the desired maximum range, a is the desired

minimum range, and min()ix and max()ix are the minimum and maximum of feature xi over

the entire training samples, respectively. Looney [1997:88] suggests using this

preprocessing technique when applying it to the feed-forward neural network. Looney

[1997:355] also suggests using [0, 1] for the RBF networks and [∈, 1-∈] for the feed-

forward neural networks. A suggested value for ∈ is 0.2 or 0.15 [Looney, 1997:355].

Standardization

In this method, each feature in an exemplar is standardized (i.e., has zero mean and one

unit of standard deviation) by subtracting the mean and dividing by the standard

deviation of that particular feature. The standardization is accomplished for each feature

and is typically expressed mathematically as

()* i i
i

i

x
x

μ
σ
−

= (3.2)

where xi
* is the transformed data, and μi and σi are the mean and standard deviation of

feature xi over the entire training samples. It is important to keep in mind that when

applying standardization to the testing data, the analyst should use the mean and standard

deviation derived from the training data; this is also true when performing the

normalization on the testing data where the min and max used should be calculated from

the training data.

 43

Principal Component Analysis (PCA)

PCA (also known as the Karhunen-Loève transformation) is a data reduction technique

used to reduce a complex dataset to a lower dimension to expose the sometimes hidden,

underlying structure of a high dimensional data (e.g., data with several features). This

technique falls under unsupervised learning where the algorithm learns important

patterns or features in the input data without the aid of the target (output) data [Haykin,

1999:392]. The basic premise is to transform the original set of variables (features) into

some smaller set of linear combinations that explain the most variance of the original

dataset [Dillon and Goldstein, 1984:24]. In PCA, it is typical to transform the raw data to

either a covariance matrix or a correlation matrix before proceeding with the actual

principal component analysis. The most common approach is to use the matrix of

correlations versus the covariance matrix [Dillon and Goldstein, 1984:26]. The main

reason for using the correlation matrix is that the input data more often than not have

different unit and scales whereas the correlation computation removes the variation thus

making the data directly comparable [Dillon and Goldstein, 1984:26]. Depending on

which matrix is used for the PCA, the solutions will differ. In order to demonstrate the

method of PCA, the sample means, variances, covariances and the correlations between

the features need to be calculated. Next we describe the general PCA algorithm using the

basic statistical derivation presented in Dillon and Goldstein [1984].

PCA Algorithm

Step 1: Collect raw data. Assume data is the form n x d where n is the data sample size

and d is the dimension of the data (number of features).

Step 2: Subtract the mean. The mean that needs to be subtracted is the average across

each dimension (each feature’s average). The data at this point has been mean corrected.

Step 3: Transform the mean corrected data into a covariance and correlation matrix. The

covariance between x1i and x2i is given by

1 2 1 2
1

1 n

x x i i
i

C x x
n =

= ∑ (3.3)

 44

where x1i and x2i are the ith sample of the first and second features, respectively. The

correlation matrix uses the standardized data where the mean corrected data is divided by

their respective standard deviation. Letting x1i
* = x1i/σx1 x2i

* = x2i/σx2, the correlation

between x1i and x2i is given by

1 2

* *
1 2

1

1 n

x x i i
i

R x x
n =

= ∑ . (3.4)

Step 4: Perform eigenanalysis on the R and C matrices. Eigenanalysis is simply

extracting the eigenvalues (also called characteristic roots or latent roots) and

eigenvectors (also known as characteristic vectors) of the desired matrix. See Jackson

[1991:7-10] for a good example of how to perform an eigenanalysis on a two-feature

dataset. Once the eigenvalues are extracted from the R matrix, use Kaiser’s criterion (λ ≥

1) to determine how many r principal components to retain [Dillon and Goldstein,

1984:48] (i.e., retain r ≤ d). There are other criterions for determining the number of

factors to retain such as Cattell’s scree test and the Horn’s test when using the R matrix

[Dillon and Goldstein, 1984:48-50]. Next extract the eigenvalues and eigenvectors from

the C matrix.

Step 5: Form the component scores. For the extracted eigenvectors from the C matrix,

the component scores denoted by the ith sample are

T
(1) (1)

T
(2) (2)

T
() ()

()

()

()

x

x

x

i i

i i

i r r i

y

y

y

= −

= −

⋅
⋅
⋅

= −

a x

a x

a x

 (3.5)

 45

where ix is the ith observation vector and x is the average of the sample vector from the

training data. The component scores Y is represented as a n x r matrix [Dillon and

Goldstein, 1984:51]

1Y I E X
n

⎛ ⎞= −⎜ ⎟
⎝ ⎠

A (3.6)

where X is the n x d data matrix, I is the n x n identity matrix, E is the n x n matrix of

ones, and A is the d x r matrix whose columns are the first r eigenvectors (loadings) of

the C matrix. If the loadings A are derived from the R matrix, the X matrix in equation

(3.6) would be substituted with the standardized score matrix instead of the mean

corrected data as shown in equation (3.5) [Dillon and Goldstein, 1984:51].

After the pre-processing stage, implementing some type of variance reduction

technique (VRT) could prove beneficial in the reduction of the variance of the

simulation-generated estimators. This is useful when we are interested in certain

quantities like the mean of the simulation. The most commonly used variance reduction

techniques in the field are common random numbers (CRN; also known as correlated

sampling), antithetic variates (AV), and control variates (CV; also known as regression

sampling) [Kleijnen, 1977]. It is recommended that an initial pilot run be performed to

assess the value of any VRT being considered [Kleijnen, 1977]. Usually, VRT can

greatly reduce simulation run lengths and still give accurate estimates of the desired

parameters. In addition, the use of VRT can produce smaller confidence intervals for the

same number of simulation replications. Due to the monolithic tendencies of aggregated

combat models, engaging some type of VRT may greatly reduce the required number of

simulation runs which tend to be costly in terms of time and money. Thus, at every

possible opportunity, VRT should be implemented (and learned by the analyst) since it

can yield a more effective simulation, typically at a cost that is relatively minor as

compared to the total cost of the simulation [Nelson, 1990]. We also investigated three

types of neural networks in order to build the prediction metamodel of certain simulation

 46

outputs: FANN, RBF, and the generalized regression neural network (GRNN), which are

the typical ANN prediction problem tools used in the field.

For step 3 of our process set forth in Section 3.8, in order to determine the

accuracy of the metamodeling technique, some form of performance estimation has to be

established. For this analysis we will use the method described in Sections 10.2-10.3 in

Law [2006:552-561] and some of the heuristic procedures discussed in Law [2006:330-

359] to determine if the alternative methods are significantly different from the Direct

Method (DM) approach. The alternate method that is not statistically different from the

DM approach and has the smallest error function mean absolute error (MAE) from DM

will be considered “best” alternative for that specific simulation application in terms of

the means. In addition, the higher-level simulation outputs can be further assessed using

graphical comparison methods and the Kolmogorov-Smirnov test for comparing

distributions. The details on how to employ the recommended performance estimation

techniques are discussed in Section 3.8.

3.4 Mathematical Representation of a Discrete Event Simulation (DEVS) using factor

analytic method

In order to perform aggregation of large hierarchical simulation models, the question of

“what” and “how” needs to be addressed. The “how” part of the aggregation process will

be addressed in more detail in Section 3.6 by means of different statistical techniques

such as variance reduction, artificial neural networks, etc. To facilitate the “what”

portion of the aggregation process the hierarchical simulation model needs to be

characterized in a mathematical format to aid in determining what portion (lower-level or

submodel) of the entire simulation model can be aggregated. Based on the work by

Bauer et al. [1985; 1991] and Matthes [1988] a good mathematical representation of the

simulation structure is through the construction of a network representation of the model.

This, in turn, can be systematically decomposed into smaller subnetworks by performing

model decomposition by means of factor analytic methods to represent a portion of that

model that can be aggregated. The reason for decomposing large model representation is

to ease model implementation at smaller segments. The level of aggregation performed

 47

depends on what level of detail needs to be maintained. In terms of hierarchical

simulation models, the aggregation can be performed either at the highest level, where

the entire simulation model within a level is aggregated, or within the individual model

itself. We will distinguish between the within-a-level and the within-a-model as logical

and structural decomposition, respectively. We define the decomposed portions of the

simulation model for the logical and structural as lower-level models and submodels,

respectively. An example of each type of decomposition is demonstrated in the two

application models investigated in this research; the logical decomposition is

demonstrated for the flying training model and the structural decomposition is

accomplished for the sortie generation model.

The first step is to build a network structure representation of the simulation

model in order to identify what can be aggregated. The network structure is built using

nodes (vertices), arcs (edges), and relationship(s) between nodes.

Based on the textbook definition by West [2001] the following is the definition of

a graph

Definition. A graph G is a triple consisting of a vertex set V(G), and
edge set E(G), and a relation that associates with each edge two vertices
(not necessarily distinct) called its endpoints [West, 2001:2, Definition
1.1.2].

Additionally, a graph is drawn by setting each vertex at a point and signifying

each edge by a line connecting the locations of its endpoints. The values assigned to the

edges are the amount of information (e.g., number of inputs, attributes, etc.) being passed

between vertices. A graph may be undirected, which means that there is no specified

flow between the vertices that the edges are connecting and therefore could go both ways,

or the edges may be directed where there is a distinct flow between vertices and only go

one way. The arrow heads on the edges show the direction of information flow,

specifically for directed graphs. Figure 14 is an example of a directed graph. Figure 14

depicts a graph with the following representation

G = {V(G), E(G), R(G)} (3.7)

 48

where V(G) = {N1, N2, N3, N4, N5, N6, N7, N8, N9}, is the vertex set,
 E(G) = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12}, is the edge set,
 R(G) = {eN1↔N2, eN1↔N3, eN2↔N3, eN1→N4, eN4→N7, eN7→N1, eN4↔N5, eN4↔N6,...

eN5↔N6, eN7↔N8, eN7↔N9, eN8↔N9}, is the set of relations.

A matrix is typically a clear and efficient manner of representing a graph for use

in analysis. A graph can also be represented in terms of its adjacency and/or incidence

matrix. Fundamentally, the incidence matrix captures the vertex-to-edge relationships

while the adjacency matrix captures the vertex-to-vertex relationships. The following is

its formal definition

Definition. Let G be a loopless (multiple edges are allowed but loops are
not) graph with vertex set V(G) = {υ1,..., υn} and edge set E(G) = {e1,...,
em}. The adjacency matrix of G, written A(G), is the n-by-n matrix in
which entry ai,j is the number of edges in G with endpoints {υi, υj}. The
incidence matrix M(G) is the n-by-m matrix in which entry mi,j is 1 if it is
an endpoint of ej and otherwise is 0 [West, 2001:6, Definition 1.1.17].

The adjacency matrix A(G) = (ai,j) is therefore given by

i j
,

1 (,) ()
0 otherwise,i j

E G
a

υ υ ∈⎧
= ⎨

⎩
 (3.8)

and the incidence matrix M(G) = (mi,j) of a graph is given by

i
,

1 if is an endpoint of
0 otherwise.

j
i j

e
m

υ⎧
= ⎨

⎩
 (3.9)

We demonstrate the decomposition process by factor analytic method on the simple

directed graph (Figure 14) in Bauer et al. [1985; 1991].

 49

N1

N3N2

N4

N6N5

N7

N8 N9

e1 = 1

e2 = 1

e3 = 1

e10 = 1 e11 = 1

e12 = 1

e4 = 1 e5 = 1

e6 = 1 e9 = 1

e7 = 1 e8 = 1

Figure 14 - Bauer 91 Simple Network Graph

Consider the network graph in Figure 14. After the construction of the network graph

(Bauer et al. calls this the cluster interaction graph (CIG)), we form its association

matrices and apply factor analytic methods to these matrices. The association matrices

are basically the pseudo-correlation and pseudo-covariance matrices associated with the

network graph and signify the strength of relationship between the vertices (nodes).

Using the correlation matrix, we extract the number of principal components by selecting

its associated eigenvalues of one or greater; using Kaiser’s criterion [Kaiser, 1960] to

determine the number of principal components to retain. The underlying principle for the

Kaiser criterion is as follows: each observed variable contributes one unit of variance to

the total variance in the dataset. Hence, any factor that has an eigenvalue greater than

one accounts for a greater amount of variance than had been contributed by one variable.

Additionally, a factor that displays an eigenvalue less than one explains less variance than

had been contributed by one variable. Next, we use the covariance matrix and extract the

eigenvectors, with consideration to the number of principal components retained using

the correlation matrix, and rotated to a more interpretable structure. Next we provide the

procedure in details.

Before proceeding, one can visually assess that there are three subnetworks for

the simple graph in Figure 14 (i.e., one of the subnetwork contains nodes 1, 2, and 3;

another contains nodes 4, 5, and 6 and; the last subnetwork contains nodes 7, 8, and 9).

We will now verify this visual assessment with the decomposition method. First we

 50

construct the edge incidence matrix for the simple network graph (GSN) as described

earlier and is shown in Figure 15.

SN

 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

N1 1 0 1 0 0 0 0 0 0 1 1 0
N2 1 1 0 0 0 0 0 0 0 0 0 0
N3 0 1 1 0 0 0 0 0 0 0 0 0
N4 0 0

 () = N5
N6
N7
N8
N9

M G
0 1 1 0 0 0 0 1 0 1

0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Figure 15 - Simple Network Graph Edge Incidence Matrix

Next in the process is constructing the pseudo-covariance matrix C = MWMT,

where W is the edge weighting matrix and can be used to account for the amount of

information being passed between the nodes. The W matrix used for the GSN is shown in

Figure 16.

SN

 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

e1 2 0 0 0 0 0 0 0 0 0 0 0
e2 0 2 0 0 0 0 0 0 0 0 0 0
e3 0 0 2 0 0 0 0 0 0
e4
e5
e6

 () =
e7
e8
e9
e10
e11
e12

W G

 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Figure 16 - Simple Network Graph Edge Weighting Matrix

Hence, the calculated C matrix for the simple network graph follows and is shown in

Figure 17.

 51

SN

6 2 2 1 0 0 1 0 0
2 4 2 0 0 0 0 0 0
2 2 4 0 0 0 0 0 0
1 0 0 6 2 2 1 0 0

 () = 0 0 0 2 4 2 0 0 0
0 0 0 2 2 4 0 0 0
1 0 0 1 0 0 6 2 2
0 0 0 0 0 0 2 4 2
0 0 0 0 0 0 2 2 4

C G

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Figure 17 - Simple Network Graph Pseudo-Covariance (C) Matrix

Since C in Figure 17 is symmetric (i.e., a matrix is equal to its transpose) and positive

semidefinite (i.e., all its principal minors ≥ 0), it can be converted to a pseudo-correlation

matrix R = DTCD, where D is the inverse square root of the diagonal matrix of C and the

D calculation is shown in Figure 18 with the corresponding simple network graph D

matrix.

SN

1 0 0 0 0 0 0 0 0
6

10 0 0 0 0 0 0 0
4

10 0 0 0 0 0 0 0. 4
. 0 10 0 0 0 0 0 0 0. 6

1 10 0 0 0 0 0 0 0 = , () =
4

1. 0 0 0 0 0 0 0 0
40 .

1. 0 0 0 0 0 0 0 0
6

10 0 0 0 0 0 0 0
4

10 0 0 0 0 0 0 0
4

ii

D D G
c

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Figure 18 - Simple Network Graph D Matrix

 52

The derived R matrix is shown in Figure 19.

SN

 1 0.408 0.408 0.167 0 0 0.167 0 0
0.402 1 0.5 0 0 0 0 0 0
0.402 0.5 1 0 0 0 0 0 0
0.167 0 0 1 0.408 0.408 0.167 0 0

 () = 0 0 R G 0 0.408 1 0.5 0 0 0
 0 0 0 0.408 0.5 1 0 0 0
0.167 0 0 0.167 0 0 1 0.408 0.408
 0 0 0 0 0 0 0.408 1 0.5
 0 0 0 0 0 0 0.408 0.5 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Figure 19 - Simple Network Graph Pseudo-Correlation (R) Matrix

Now that the association matrices have been derived, two decisions have to be

made from these matrices: 1) assess the dimensionality of the network and 2) interpret the

factors (subnetwork). The dimensionality assessment is basically determining how many

subnetworks are present in the larger network. The dimensionality assessment is

accomplished by extracting the principal components from the R matrix and retaining

only the factors described in Kaiser’s [Kaiser, 1960] criterion (eigenvalues: λ ≥ 1).

Principal component analysis partitions the data by variance using linear combination of

‘original’ factors. Table 8 depicts the results of performing the principal component

analysis on the pseudo-correlation matrix R.

Table 8 - Simple Network Graph Extracted Factors

Factor Eigenvalue Percent of
Variation

Cumulative Percent
of Variation

1 2.00 22.22 22.22
2 1.83 20.37 42.59
3 1.83 20.37 62.96
4 0.83 9.26 72.22
5 0.50 5.56 77.78
6 0.50 5.56 83.33
7 0.50 5.56 88.89
8 0.50 5.56 94.44
9 0.50 5.56 100.00

Based on the demonstrated eigenvalues from Table 8, three factors are retained.

This signifies that there are three subnetworks in the network being decomposed. This

 53

was assessed earlier using visualization in the network graph representation. We now

need to find which nodes belong to what subnetworks. Armed with the knowledge of the

number of factors to retain, we use this information when we perform a principal

component analysis on the C matrix. Table 9 is the initial factor loading result on the

PCA performed on the C matrix. This table illustrates the relation of the nodes to the

factors; the greater the value of the loading, the greater the linear correlation of the nodes

to the factor. To make the interpretation simpler, we perform a rotation where a linear

transformation is performed on the factor solution.

Table 9 - Simple Network Graph Initial Factor Loadings - C
Node Factor 1 Factor 2 Factor 3

1 -0.609 0.000 0.620
2 -0.373 0.000 0.640
3 -0.373 0.000 0.640
4 -0.609 -0.537 -0.310
5 -0.373 -0.554 -0.320
6 -0.373 -0.554 -0.320
7 -0.609 0.537 -0.310
8 -0.373 0.554 -0.320
9 -0.373 0.554 -0.320

Not much can be interpreted from the initial factor loading (see Table 9), thus we

need to perform several common orthogonal rotations [Dillon and Goldstein, 1991:91]

(e.g., varimax, quartimax, and equamax) to the truncated set of principal component

matrix and generate a much more meaningful result. An orthogonal rotation results in

uncorrelated factors. Performing different rotations to the initial factor loadings in factor

analysis aids the assessment of the robustness of the interpretation of the rotation. The

rotation causes the pattern to have a “simple structure” where most of the nodes have

relatively high factor loadings on only one factor, and close to zero on the other factors

[Harman, 1967:294]. The earliest five criteria for simple structure were developed by

Thurstone [1947:335]. Before proceeding with the mathematical representation of the

different orthogonal rotations, it would be beneficial at this time to define the following

notation from Harman [1967:297]:

Let
 A = (air), initial factor loadings matrix
 B = (bir), rotated factor loadings matrix
 T = (tdr), orthogonal transformation matrix

 54

∋ B = AT (3.10)

where i = 1, 2,..., n: number of variables
 r = 1, 2,..., m: number of retained factors (principal components)
 d = 1, 2,..., m: number of original factors, r ≤ d.

Note: The maximum number of principal components = number of variables

The general mathematical expression of the orthogonal rotation methods

(orthomax), obtained from Jackson [1991:161-163] start with

find T ∋
2

4 2

1 1 1

n m m

ir ir
i r r

cb b
m= = =

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑ ∑ is maximized (3.11)

where c is some constant.

The quartimax rotation [Neuhaus and Wrigley, 1954] method seeks to simplify

the description of each row, or variable, of the loadings matrix by maximizing the

variance of squared factor loadings [Harman, 1967]. In the quartimax c = 0 for the

general orthomax expression. The rotation using quartimax is shown Table 10. Notice

that nodes 4 to 9 are not as easy to interpret as nodes 1 to 3. The loadings on nodes 4 to 9

are not as easy to attribute to a specific factor.

Table 10 - Simple Network Graph Quartimax Rotated Factor Matrix - C

Node Factor 1 Factor 2 Factor 3
1 -0.151 0.000 0.855
2 0.055 0.000 0.739
3 0.055 0.000 0.739
4 -0.677 -0.537 0.089
5 -0.488 -0.554 -0.053
6 -0.488 -0.554 -0.053
7 -0.677 0.537 0.089
8 -0.488 0.554 -0.053
9 -0.488 0.554 -0.053

The most popular rotation method is the varimax rotation [Kaiser, 1958] which is

a modification of the quartimax rotation. In the varimax rotation c = 1 for the general

orthomax equation. The rotation using varimax is shown Table 11. Notice this time the

varimax rotation created the desired “simple structure” (i.e., heavy loading on one factor

per node). In contrast to some other types of rotations (e.g., quartimax or equamax), a

 55

varimax rotation seeks to maximize the variance of a column of the factor pattern matrix

of the retained factors.

Table 11 - Simple Network Graph Varimax Rotated Factor Matrix - C
Node Factor 1 Factor 2 Factor 3

1 -0.098 -0.098 0.857
2 0.046 0.046 0.738
3 0.046 0.046 0.738
4 -0.098 -0.857 0.098
5 0.046 -0.738 -0.046
6 0.046 -0.738 -0.046
7 -0.857 -0.098 0.098
8 -0.738 0.046 -0.046
9 -0.738 0.046 -0.046

The equamax orthogonal rotation [Saunders, 1961] seeks to maximize a weighted

sum of the varimax and quartimax criteria, where the simple structure is concerned with

simultaneous within variables (rows) as well within factors (columns) variance. In the

above general orthomax expression c = n/2. Although the varimax rotation has already

demonstrated a desirable “simple structure,” for completeness, Table 12 depicts the

rotated factor of the initial factor loading matrix for the covariance matrix (C) using

equamax. Note that the rotated factor loadings are identical to the varimax rotated

matrix.

Table 12 - Simple Network Graph Equamax Rotated Factor Matrix - C
Node Factor 1 Factor 2 Factor 3

1 -0.098 -0.098 0.857
2 0.046 0.046 0.738
3 0.046 0.046 0.738
4 -0.098 -0.857 0.098
5 0.046 -0.738 -0.046
6 0.046 -0.738 -0.046
7 -0.857 -0.098 0.098
8 -0.738 0.046 -0.046
9 -0.738 0.046 -0.046

Typically, part of the factor analysis assessment is to evaluate how the nodes in

the factors are related and thus producing a “naming” convention for the grouping, also

known as the interpretability criterion. In our case, we only need to assess which nodes

 56

belong to what factor, since the graph is fairly generic and no specific naming were

assigned to the nodes initially.

After examining Tables 11 and 12, we see: nodes 1, 2, and 3 load on Factor 3,

nodes 4, 5, and 6 load on Factor 1, and that nodes 7, 8, and 9 load on Factor 2. This

confirms the initial visual assessment from earlier on which nodes should cluster together

using the varimax and/or equamax methods for rotation.

3.5 Determining number of replications based on precision accuracy β

In the event that the number of replications is not yet determined for a simulation model,

the analyst needs to determine the proper number of replications to use in order to

properly gather the desired statistics. Instead of running several hundreds, or thousands,

of replications without knowing the exact amount of replications to run or just by

guessing, one could get an approximate number of replications by specifying a precision

for the output(s) of interest. Fixing the number of replications gives little to no control

over the confidence interval half-length [Law, 2006:500]; therefore, an analytical

procedure to determine the number of replications for estimating the mean with a desired

error of precision is performed. One could define a specified confidence interval half

width percent variation as applied in Faas [2003]. Another method is to obtain an

absolute error of at most β with a probability of approximately 1-α and use the equation

below [Law, 2006:501, Eqn 9.2]

2
*

1,1 / 2
()() min :a i

S nn i n t
iαβ β− −

⎧ ⎫⎪ ⎪= ≥ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

 (3.12)

where * ()an β : total number of replications required to obtain β

 i: initial number of replications

 β: absolute error > 0

 57

 t: t-statistic

 α: type 1 error

 n: fixed number of replications

 S2(n): population variance estimate.

Note that the β used here is not the same as the regression coefficients discussed in

Section 3.6 for regression and MetaSim. In keeping with the Law [2003] text and

conventional regression coefficient parameter representations, we will leave both as β.

To construct a confidence interval for multiple measures of performance where

several measures are of interest simultaneously, regardless if whether or not the intervals,

Is’s, are independent, we need to build a Bonferroni general inequality (Law, 2006:537,

Eqn 9.11) presented in the equation below

1
(1, 2,...,) 1

k

s s s
s

P I s kμ α
=

∈ ∀ = ≥ − ∑ (3.13)

where sμ : measure of performance

 k: total number of different measures of performance (output of interest)

 α: type 1 error.

 The Bonferroni method allows for several confidence intervals to be constructed

while still ensuring an overall confidence is achieved. This method operates by

increasing the confidence level of the individual comparisons such that the resultant

comparison has at least the specified confidence level. Thus, to achieve simultaneous

multiple interval estimates with an overall 1-α confidence, one can construct each

interval with confidence coefficient 1-α/k and the above inequality ensures that the

overall confidence is at least 1-α.

 58

3.6 Aggregation Methodologies

Once the candidate submodel(s) for aggregation have been identified, Step 2 will

implement different aggregation methods, vice using the Direct Method, such as

replacing the output data of the lower-level models with:

(1) the mean,

(2) feeding the Normal Distribution with the data’s mean and standard deviation

(using the sampling distribution of Y),

(3) the control variate technique mean,

(4) feeding the Normal Distribution with the control variate mean and standard

deviation (using the sampling distribution of Y),

(5) replacing the output data with their fitted distribution,

(6) building a regression model representation of the identified submodel;

(7) building an Artificial Neural Network (ANN) representation of the identified

submodel,

(8) building a MetaSim representation of the identified submodel.

 The Direct Method is considered the truth model (standard) in which the eight

alternatives are compared to. This method takes all the actual outputs from the

conventional lower-level simulation model and passes them to the next level model as

inputs. The data/simulation model accessibility, in terms of having access and time to

set-up and complete additional simulation runs or not, will dictate which method will

work best as the type of aggregation method the analyst would implement. Figure 20

provides a straightforward guideline on how to decide which method(s) to use with the

hierarchical simulation model’s input/output data. As indicated in Figure 20, before

implementing any of the specific aggregation method(s), the analyst needs to recognize

the accessibility of future (or additional) simulation data. If the lower-level simulation

model/data is accessible and more runs can be accomplished, then as a different

representation of that simulation model output, any of the methods described in Methods

1 through 5, or 8 can be used. On the other hand, if the access to future simulation

 59

data/model is limited or unattainable, then it is recommended that Methods 6 through 8

be built in order to still generate representative lower-level model predictions for

unforeseen input setting changes.

Figure 20 - Aggregation Methods Usage Guideline

 We now discuss the eight alternate aggregation methods to get a better

understanding of how to implement the different methodologies used for aggregation. It

is important to keep in mind that for all the alternate aggregation methods discussed, the

simplifying assumption is that the multiple outputs of the lower-levels are independent of

each other. In situations when considering multiple outputs, bear in mind the possibility

of dependence between outputs and to possibly capture the outputs jointly for input into

the higher-level model. For instance, for two lower-level outputs, an input into the

higher-level model in Method 2 would result in a bivariate normal parameterized by two

means and a 2x2 covariance matrix. At the time of finding this dependency

consideration, the effort at this time is beyond the extent of this research, but should be

addressed in future research.

 60

3.6.1 Method 1 – Mean (ilY)

This method is the simplest and the most common [Oracle, 2006; Zeigler, 2000;

Cassandras et al., 2000] of all the suggested aggregation methods. It takes the average of

the lower-level output, per type (i), from each replication (j) and uses these averages as

the per replication input by scenario (l) into the next higher level. A simple diagram of

this method is illustrated in Figure 21.

 1 2 ...

...,1,1, ,1,2, ,1, , 1
 2 ,2,1,
 ...

Observation #

 Replication # i

i

K

Y Y Yi l i l i K l

Yi

j

...,2,2, ,2, ,

..., ,1, , ,2, , , ,

i

i

Y Yl i l i K l

Y Y Yi j l i j l i j K l

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Output Type i

Scenario # l

Avg per rep

1 1
1

1=
iK

i l i kl
ki

Y Y
K =

∑

2 2
1

1=
iK

i l i kl
ki

Y Y
K =

∑

1

1=
iK

ijl ijkl
ki

Y Y
K =

∑

Avg across reps

=1 1

1 1 =
iKJ

il ijkl
j ki

Y Y
J K =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑
…

Figure 21 - Method 1 Aggregation Diagram

The point estimator of
iYμ , which is the average per replication and per scenario for each

output Yi, is calculated as follows:

=1 1

1 1 = ,
iKJ

il ijkl
j ki

Y Y i l
J K =

⎛ ⎞
∀⎜ ⎟

⎝ ⎠
∑ ∑ (3.14)

where i: output type, i = 1,...,I,

 j: replication number, j = 1,...,J,

 k: observation number, k = 1,...,Ki, Ki = number of individuals in output type i

 l: scenario number, l = 1,...,L.

 61

3.6.2 Method 2 – Normal (, il
sY
J

)

Method 2 assumes a normal distribution for the outputs generated at the lower-level

model. In order to use this assumption we need to make sure that we meet the conditions

of the central limit theorem, indicating the normal distribution is a suitable approximation

for the distribution of the data. Even if the underlying distribution of iY are not

normally distributed, it may have a sampling distribution that is approximately normal if

the sample size (J) is large (usually greater than 30) [Wackerly et al., 1996:303-310].

The standard error s
J

⎛ ⎞
⎜ ⎟
⎝ ⎠

of ilY [Wackerly et al., 1996:326] is the sample analog of the

square root of the following

 l ()
()2

2 1 = ,

J

ijl il
j

ijlil

Y Y
Var Y i l

J
σ =

−
= ∀

∑
and

1

1= , ,
iK

ijl ijkl
ki

Y Y i j l
K =

∀∑ (3.15)

where i: output type, i = 1,..., I

 j: replication number, j = 1,..., J

 k: observation number, k = 1,..., Ki, Ki = number of individuals in output type i

 l: scenario number, l = 1,..., L

 l 2
ilσ : variance of the output type i outputs across the j replications per l scenarios

 s: sample standard deviation.

3.6.3 Method 3 – Control Variate (CV) Technique Mean (l l()iYμ β)

A variance reduction technique called controlled variates is used for this method. Control

variates is a regression technique that seeks to exploit any correlation between random

variates and the output of interest in a simulation model. In this method we examine the

effects of using the control variate mean as opposed to the sample mean of Method 1.

The purpose is to obtain an estimator of
iYμ with less variance than Method 1 [Bauer and

 62

Wilson, 1993:70]. For other aspects and the complete derivation of the control variate

technique the reader is referred to Bednar [2005], Nelson [1990], or Wilson [1984]. Note

that we follow the convention used in Bednar [2005] for the source of the equations. The

point estimator of
iYμ is estimated by

l l() l()
1

1= ,
il

J

ijlY
j

Y i l
J

μ β β
=

∀∑ . (3.16)

Also, β are the coefficients estimated by

l
()()

()
1

2

1

 = ,

J

ijl il j
j

J

j
j

Y Y X X
i l

X X
β =

=

− −
∀

−

∑

∑
 (3.17)

where J: is the sample size (i.e., number of replications in each scenario)

 X: random variates (often times referred to as controls).

 For this method, the analyst/simulationist can choose to “standardize” the controls

[Bauer and Wilson, 1993] as the inputs into the CV technique or proceed as usual. The

usual procedure for the controls is to subtract the known mean (typically user-given)

from the simulation output collected from a specific control. However, when using the

Bauer and Wilson [1993] controls standardization, the number of occurrence and the

user-given standard deviation for a specific control are taken into consideration. It is

recommended to try both and determine which works best for the simulation at hand.

3.6.4 Method 4 - l l() CV 11 Normal (,)
i iY Y sεμ β μ σ∼

This method is an extension of Method 3 and uses the CV-mean along with its standard

deviation as the parameters of the normal distribution. For this method, in order to

determine which random variate(s) to keep in the model (i.e., control variate selection

 63

routine), a simplification technique like the sequential procedure needs to be

implemented such as forward selection, backward selection, or step-wise regression

[Dillon and Goldstein, 1984:235-242, Jackson, 1991:269]. In addition, a p-value for the

enter/leave criteria needs to be to established in order to choose the subset controls q of

the m collected controls where q ≤ m. The value σε represents the variability in the mean

of the output (Y) given we have accounted for the q controlled variables (X) and is

estimated as

l
l l ()

2

2 1 1 =
1

i q

QJ

ijl Y q jq X
j q

Y X

J Q
ε

μ β μ
σ

= =

⎛ ⎞⎛ ⎞
− + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

− −

∑ ∑
 (3.18)

where J: is the sample size

 Q: number of significant random variates.

On the other hand, s11 represents the variance of the intercept of the regression equation

and is estimated as follows,

()

()

2

1 1
11 2

1 1

 =
q

QJ

jq X
j q

QJ

qjq
j q

X
s

J X X

μ
= =

= =

−

−

∑∑

∑∑
 (3.19)

where J: is the sample size

 Q: number of significant random variates.

3.6.5 Method 5 – Distribution Fitting

Distribution fitting is the process of choosing the statistical distribution which best fits to

a dataset generated by some random process. In general, it is necessary to represent the

source of randomness by a probability distribution (versus just its mean) in the simulation

model [Law, 2006:238]. The idea for this technique is to “fit” a theoretical distribution,

rather than an empirical distribution, to the lower-level model output. If a theoretical

distribution can be found that fits the data that we are trying to aggregate reasonably well,

 64

then this is most generally preferred to using an empirical distribution [Law, 2006:279-

280]. In cases where a theoretical distribution can never take on a value b, then it might

be advantageous to truncate or shift the fitted theoretical distribution to gain a more

realistic fit [Law, 2006:359-361].

 This method uses all the data of each lower-level output and fits a distribution

using Arena®’s Input Analyzer. The per scenario distribution of the output data is in

turn used as the distribution from which the next higher-level model will sample its input

from. Matlab’s (R2007a) distribution fitting functions and ExpertFit® (XFIT 26) can

also used to fit the data, but the suggested distribution functions from the Input Analyzer

tend to be more representative of the simulation data used. In our case, this could

possibly be because the simulation outputs being fitted are a product of an Arena

simulation. Thus, it is generally recommended to re-generate the data using the

suggested distribution, along with its parameter(s), and confirm that the data that are

being randomly generated closely follows the output that is being fitted. Basically, fit the

data, collect the suggested distribution, re-generate the data using the suggested

distribution fit, and compare the original output to the regenerated data to verify

correctness of suggested theoretical distribution.

3.6.6 Method 6 – Regression

This method utilizes the ordinary least squares approach which minimizes the sum of

squared deviations (residuals) [Draper and Smith, 1998:23]. For supplemental details on

the regression technique, the reader is referred to Draper and Smith [1998] and Dillon

and Goldstein [1984]. In this method we use the per-scenario d input (X), where X is n x

d, and c output variables (Y) of the lower-level model to build its corresponding

regression model. One regression equation is built for each output of the lower-level

model, thus the entries into the Y matrix will change depending on the current output and

the operation consists of c separate regression computations. For this method, in order to

determine which variable to keep in the model, a simplification technique like the

sequential procedure needs to be implemented such as forward selection, backward

selection, or step-wise regression [Dillon and Goldstein, 1984:235-242, Jackson,

 65

1991:269]. This step is particularly important whenever the dimensionality (i.e., size of

d) of the input data is large. In addition, a p-value for the enter/leave criteria needs to be

to established in order to choose the subset controls r of the d collected inputs where r ≤

d. The equation for the regression in matrix form is as follows

Y = Xβ + ε (3.20)

where Y: is a (n x 1) column vector of observations on the dependent output Y

 X: is a (n x d) vector of independent input predictors

β: is a (d x 1) column vector of unknown parameters called partial regression

coefficients or weights

ε: is a (n x 1) column vector of errors or residuals and in vector terms we can

write ε ∼ Ν(0, Iσ2), where E(ε) = 0, V(ε) = Iσ2.

The least squares estimate of the β is the value b and is calculated as follows

() 1T T
train train train train trainb = X X X Y

−
 (3.21)

where trainX is the training data input and trainY is the training data output. Note that a

training dataset needs to be predefined to obtain the b estimates in equation (3.21) to

apply to the testing data in order to obtain the testing data predicted values. This simply

means that we derive our b estimates using a different set of data for what we are trying

to predict. Thus, the predicted value (as it is applied to the testing dataset) is given by

 l
test test trainX bY = (3.22)

where l testY is the regression test prediction per output type i, testX is the new (test) data

input and trainb is the least squares estimate of the β derived from the training data. A

 66

more detailed discussion on how to separate the data into training and testing datasets,

used in this method and Method 7, will be covered in Section 3.7.

 Note that the difference between the regression in this method and Methods 3 and

4 lies in the predictor variables used. In Methods 3 and 4 the predictor variables are the

random variates collected from the simulation model, whereas the predictor variables

used in this method (Method 6) are the simulation model inputs.

 An extension to the regression method is proposed, similar to the concept used in

Method 2, where we assume a normal distribution and generate regression predictions

based on

l l l'
test test test(, ())Y Normal Y Var Y= (3.23)

where l testY from equation (3.22) is the value predicted at Xtest by the regression equation

and Var(l testY) is given by

l () 1' ' 2
test test train train test() X X X XVar Y σ

−
= . (3.24)

The value of σ2 in equation (3.24) is typically unknown an is thereby estimated by s2

using [Dillon and Goldstein, 1984:226]

() ()'
train train train train train train2 Y X b Y X b

s
n p

− −
=

−
 (3.25)

where n: total of observation (or replication runs in the simulation)

p: total number of β parameters that need to be estimated, including the intercept

β0.

The goal is to provide the users/analyst with a set of predictions from the normal

distribution with parameters estimated from previous simulation runs. Instead of

 67

providing one estimate for one given set of design variables (new simulation inputs), our

aim is to generate the distribution of the true simulation output rather than just a single

prediction. This concept of extending the regression predictions is depicted in Figure 22.

Figure 22 - Mean vs. Distribution Predictions for the Regression Method

An extension of this method is discussed in Section 3.6.8 when we include control

variables in the input matrix.

3.6.7 Method 7 – Artificial Neural Network (ANN)

The main rationale for using ANNs in the prediction process is its ability to generalize to

data that have not been seen. In contrast to linear models, nonlinear models such as

ANNs present better predictive power [Sinclair et al., 1995]. In addition, ANNs have the

capability of making effective use of sparse data and limited computational resources

[Sinclair et al., 1995]. Here the inputs of the conventional simulation model are used as

neural network training inputs. It is also possible to include the random controls

collected from the simulation in the CV technique discussed in Methods 3 and 4. The

neural network model is then used to predict the outputs of the simulation model, which

in turn, are used as inputs into the next higher-level. The same data development process

in Method 6 should be used for the ANN method, where the entire available simulation

dataset is divided between training and testing. We utilize three types of neural networks

in order to build the prediction metamodel: FANN, RBF, and the generalized regression

neural network (GRNN), which are the typical ANN prediction problem tools used in the

field [StatSoft, 2007].

 68

 A neural network learns by updating its weights according to a learning rule that

is used to train it. During the learning period, exemplars are introduced to the network in

input-output pairs. For each exemplar, the network calculates the predicted outputs

according to the set of inputs. Once enough exemplars have been fed to the network one

or more times, it is expected that the network can predict unknown outputs for new input

scenarios. The topology of the ANN (e.g., number of hidden layers and the number of

nodes in each hidden layer) and the activation function used are important factors that

influence the learning capabilities of the network. Since the rules of building ANN

models are more informal, the construction of effective ANN models becomes more of an

art than a science. Hence, several different network architectures could be examined

during the analysis stage.

 The level of detail from which the ANN will be compared to depends on the

output type. If possible, the ANN should be trained down to the noise level (i.e., each

individual output of the lower-level model) [Kilmer, 1994]. However, if there are

multiple outputs of interest and the number of individual output varies, then the average

of the different outputs might need to be used for training the ANN in order to build one

neural network for all outputs simultaneously. Unlike the regression method, one ANN

model can be built for multiple outputs. The ANN with the smallest root mean square

error (RMSE) will be considered the best neural network representation of the simulation

model and will be used as the ANN metamodel of the lower-level simulation models.

RMSE per output is calculated as follows

l
jj

2
NNDM

1

1RMSE = ()
J

ii
j

Y Y
J =

−∑ (3.26)

where J: number of replications across all scenarios

 DMiY : Direct Method output

 l
NNiY : neural network predicted output.

 69

 The different ANN methods that will be utilized as the aggregation method of the

lower-level model(s) are discussed next. Note that the input into the ANN models that

will be investigated will be in two forms: 1) only the actual simulation inputs are used or

2) in addition to the simulation inputs, consider adding the random controls collected

during the CV technique (used in Methods 3 and 4) as part of the input data. For

example, in the first case, let the n x d input matrix be X = (x1, x2,…, xn)T where d is the

dimension of the actual simulation input. Thus, for d = 2, this implies that there are two

simulation inputs per n replications and the form of the input matrix per scenario for the

first case is given by

11 12

21 22

1 2

 =
... ...

n n

x x
x x

x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

X (3.27)

where x11 is input 1 of replication 1, x12 is input 2 of replication 1, …, xn1 is input 1 of the

nth replication, and xn2 is input 2 of the nth replication. For the second case, adding the

random controls to the first case, the form of the input matrix per scenario for the second

case is given by

11 12 11 12 1

21 22 21 22 2

1 2 1 2

...

...
 =

...
...

d

d

n n n n nd

x x c c c
x x c c c

x x c c c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

X (3.28)

where the first two columns are defined the same way as the first case; c11 is the first

control collected for replication 1, c12 is the second control collected for replication 1, c1d

is the last control collected for replication 1, and cnd is the last control collected for nth

replication. The dimensionality of the input into the ANN for the second case is given by

input = x cd d d+ (3.29)

 70

where dx is the dimension of the simulation inputs and dc is the dimension of the random

controls (number of random controls collected for the simulation). Thus, for the given

example in the second case, the dimension of the input data is two plus the dimension of

the random controls. As a result of these input set considerations, two sets of input will

be considered to train and test the ANN for each of the ANN described next.

Feed-forward Artificial Neural Network (FANN)

FANN is the most popular and commonly employed neural network [Sinclair et al.,

1995]. Other names for the FANN are “multi-layer perceptrons” (MLPs) and back-

propagation (due to its learning algorithm) networks. Back-propagation networks are

based on the generalized delta algorithm, which provides a method of updating the

weights so that the errors are minimized [Bishop, 1995:140-148]. FANNs have the

property that there are no feedback loops in the network; forward propagation of function

(input) signals and back-propagation of error signals that stem from the output neuron

[Haykin, 1999]. A sample network diagram for a two-layer (counts layers of adaptive

weights and does not include the input unit as a part of the layer count) FANN is depicted

in Figure 23. The network consists of n x d inputs, one or more hidden units of

computation nodes, M, and c sets of n x 1 output units of computation nodes. Given a set

of n x d input matrix X = (x1, x2,…, xn)T and a target or output vector y = (y1, y2,…, yn)T

whose elements yi’s are the outputs corresponding to the input vectors xi, i = 1, 2,…, n

(i.e., D = {(xi, yi): xi ∈ ℜd, yi ∈ ℜ, i = 1,…n }), the goal is to build a metamodel

transforming a d-dimensional input space into a 1-dimensional target value based on the

simulation data D.

 71

Figure 23 - FANN model topology [Bishop, 1995:117]

The analytic function for the kth output unit corresponding to Figure 23, taken directly

from Bishop [1995:118-119], is as follows

(2) (1)

0 0

M d

k kj ji i
j i

y g w g w x
= =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑� (3.30)

where (1)
jiw : is a weight in the first layer, starting from input i to hidden unit j,

 (2)
kjw : is a weight in the second layer, starting from hidden unit j to output unit k,

()⋅�g : is the activation function of the output units (typically non-linear for

classification problems and linear for prediction problems),

()⋅g : is the hidden units’ activation function (need not be the same as ()⋅�g and is

typically non-linear).

 FANNs often have one or more sigmoid activation function in hidden layers, but

generally, a two-layer FANN (given adequate number of M nodes in the single hidden

layer) are universal approximators (Hornik et al., 1989). Suggested number of M value

for the neurodes are: M = 2c-1 where c is the number of outputs that need to be predicted

 72

[Looney, 1997:90-91] or M = d [Nahas et al., 1992] as described for Figure 23. Typical

activation functions used in FANNs are the logistic function or the hyperbolic tangent

function [Haykin, 1999:168-169]. This is typically followed by an output of linear

activation neurons for prediction problems. The hidden layers with non-linear activation

functions permit the network to learn linear and non-linear relationships between the

inputs and outputs [Haykin, 1999:157].

Radial Basis Function (RBF) Neural Network

RBF is a class of neural network classification which can handle large-scale practical

problems. Also, it possesses the attractive property of being able to process the linearity

and non-linearity in the model that can be handled separately, which makes it a very

flexible modeling technique [Shin et al., 2002]. Further, it has been shown to have a very

significant mathematical property of best local approximation, which is not shared by

multi-layered perceptrons [Girosi and Poggio, 1990]. Radial basis functions are

embedded into a two-layer feed-forward neural network as depicted in Figure 24. In

between the inputs and outputs there are M layers of processing units called hidden units

(also known as neurodes). Each of these M hidden units implements a non-linear transfer

function called a basis function.

Figure 24 - RBF model topology (slightly modified for clarity) [Bishop, 1995:169]

 73

Both the RBF and FANN are examples of non-linear feed-forward networks and are both

universal approximators. However, RBF networks differ from FANNs in some primary

aspects [Haykin, 1999:293; Bishop, 1995:182-183]:

 in its most basic form, the RBF network contains one hidden layer, as opposed
to one or more hidden layers for the FANNs;

 generally the hidden layer of an RBF network is non-linear, while its output

layer is linear; however, the hidden and output layers of the FANN are
typically all non-linear when used as a pattern classifier; for non-linear
regression problems, the output layer is preferred to be linear ;

 the activation function of the hidden layer in an RBF network calculates the

Euclidean distance between the input signal vector and parameter vector of
the network, as opposed to the activation function of a multilayer perceptron
where it computes the inner product between the input signal vector and the
pertinent synaptic weight vector;

 the FANN parameters are typically determined all at the same time as part of
the single global training which involves supervised training; on the other
hand, RBF networks usually is trained in two parts: first, the basis functions
are determined using only the input data (unsupervised), and the second-layer
weights are determined using the fast linear supervised methods;

 RBF networks are good local approximators to input-output mappings, while

FANNs are good global approximators.

Things to consider when building the structure for the RBF will include: choosing the

proper number of neurodes, the width of the spread of the activation function and the

choice of the activation function. The RBF network, taken directly from Bishop

[1995:168], is formally described mathematically as

 ()
0 0

() (/)
M M

k kj j kj j j j
j j

y w wϕ ϕ σ
= =

= = −∑ ∑x x x μ (3.31)

where x ∈ ℜd is the input vector with elements xi, μj ∈ ℜd is the jth basis function center

with elements μji, the norm ⋅ is the Euclidean distance, wkj’s are the weights, and the

 74

σj’s are the activation (basis) function widths. For the structure of the hidden layer in

terms of the number of neurodes, there are two ways to accomplish this task: 1) in the

generalized RBF, the number of neurodes M is smaller than the number of n training

samples (i.e., M < n); 2) in contrast, in the regularization RBF network, the number of

neurodes is exactly the same as the number of input nodes (i.e., M = n) [Haykin,

1999:281]. It is common practice to use a global width σ = σj, for j = 1, 2,..., M for the

spread of the radial basis activation functions [Shin et al., 2002]. A couple of heuristics

to use for determining the spread value are: 1) σ = 1/(2M)1/n [Looney, 1997:99] and

2) 0.25 0.75d dσ∗ ≤ ≤ ∗ [Shin and Goel, 2000:569]. Several functions ϕ(.) have

been used as activation functions for RBF networks and are listed in Table 13.

Table 13 - Some RBF activation function choices [Shin and Park 2000:4]
Basis Function () (/)rϕ ϕ σ= − μx
Gaussian exp(-r2/2)
Thin plate spline r2 log r
Inverse multiquadratic c/(r2 + c2)-1/2
Hardy multiquadratic (r2 + c2)1/2/c
Cubic r3

In pattern classification and prediction (approximation) applications the Gaussian

function is typically used as the activation function [Shin et al., 2002; Schalkoff,

1997:338] and is given by

2

2() exp
2

j
jϕ

σ

⎛ ⎞− −⎜ ⎟=
⎜ ⎟
⎝ ⎠

x
x

μ
. (3.32)

Generalized Regression Neural Network (GRNN)

GRNN is coined by Specht [1991] in the context of neural network as a representation of

the Nadaraya-Watson kernel regression; also known as Parzen-Window in the artificial

intelligence and engineering domain. Specht [1991] claims that one disadvantage of the

 75

FANN is its rate of convergence to the desired solution can take a long time. As an

alternative to the FANN, the GRNN was derived which can also be used for estimation of

continuous variables using a “one-pass” learning algorithm [Specht, 1991]. A significant

advantage of GRNN over standard nonlinear multiple regression is that a hypothesized

model need not be stipulated in advance [Hansen and Meservy, 1996:319]. A

disadvantage of the GRNN as noted by Specht [1991] is the substantial amount of

calculation required to evaluate new exemplars. GRNNs are normalized RBF networks

which estimates a linear or non-linear regression surface on the input variables [Bishop,

1995:179] and is depicted in Figure 25.

Figure 25 - GRNN model topology (modified for variable consistency) [Amiri et al., 2007:Fig 2]

 GRNN computes the most likely value for the output y given only the input

vectors x. Particularly, rather than an assumed form of the regression function, GRNN

uses the joint probability density function (pdf) of x and y denoted as p(x, y). The

problem can be thought of as that of estimating an unknown function f: x ∈ ℜd → y ∈ ℜ

(assume for now a d-dimension input with a single output for simplicity) for some finite

set of input data D = {(xi, yi): xi ∈ ℜd, yi ∈ ℜ, i = 1,…n } where n is the number of data

points (exemplars). Given the joint pdf, the GRNN generates an estimate lf for f and is

given by

l (,)
() [|]

(,)

y p y dy
f E y

p y dy

∞

−∞
∞

−∞

⋅
= = ∫

∫

x
x x

x
. (3.33)

 76

The numerator in equation (3.33) signifies that the best estimate of y is the mean of the

marginal distribution while the denominator is the scaling term that ensures the marginal

distribution integrates to one. Typically, the joint pdf p(x, y) is unknown, thus it is

estimated from the training sample data D using a nonparametric estimator known as

Parzen-Rosenblatt density estimator [Bishop, 1995:294]. The GRNN consists of 4 layers

[Amiri et al., 2007; Niu et al., 2005]:

1) The input layer that is fully connected to the pattern layer;

2) The pattern layer (also called latent regression layer) which has one neuron for

each pattern that produce a weight based upon how close the input vector is to the

associated pattern; the pattern function is expressed as

() ()
2

T2
2exp ,

2
 i

i i i i
Dh D x xμ μ
σ

⎛ ⎞−
= = − −⎜ ⎟

⎝ ⎠
 (3.34)

where ih is the output of pattern unit i, 2
iD is the squared distance between the new

input pattern x and μi is each of the input training vector, σ is the smoothing

parameter that controls the size of the receptive region;

3) The summation layer includes two units: the first computes the weighted sum

of the hidden layer outputs, where the weight value is just the value of yi of each

training sample; and the second unit (regarded as the denominator unit) is the

summation of the exponential terms and has weights equal to one;

4) To get an estimation of y, the output layer then divides the two units from the

summation layer.

After several mathematical manipulations of equation (3.33) (see Bishop

[1995:177-179] and Haykin [1999:294-298]) the input-output model for the GRNN

yields the following (also known as the Nadaraya-Watson regression estimator)

 77

l

2

2
1

2

2
1

exp
2

()

exp
2

n
i

i
i

n
i

i

y

f
σ

σ

=

=

⎛ ⎞−
−⎜ ⎟⎜ ⎟

⎝ ⎠=
⎛ ⎞−

−⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑

x

x
x

μ

μ
 (3.35)

where yi and μi are the ith output and input training vectors, respectively; and x is the

presented (test) input vector. The consideration of only the smoothing parameter σ of the

basis function is sufficient for determining the network; the larger the value of σ, the

smoother the function approximation and approaches the mean of the training set outputs;

and the smaller σ is, the function approximation approaches the output pattern of the

training set and may not generalize as well for future inputs [Hansen and Masservy,

1996]. As for the type of basis function, a widely used kernel (basis) is the multivariate

Gaussian distribution [Haykin, 1999:297]. With the use of a common smoothing

parameter and centering the kernel on the training data point μi, the equation from Haykin

[1999:298] is given by

()

2

/ 2 22

-- 1 exp
22

dK ιι

σ σπσ

⎛ ⎞−⎛ ⎞ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

xx μμ
. (3.36)

3.6.8 Method 8 – Meta Simulation (MetaSim)

MetaSim is a novel technique where the random variates in the control variate (CV)

technique (used in Methods 3 and 4) are replaced with an estimate using the Normal

distribution. This comes from the use of the Central Limit Theorem (CLT) and the

convergence concept. From the CLT, with a few restrictions, the normal distribution can

be used for general approximations for various types of distributions if the sample n is

large enough [Casella and Berger, 2002:102]; that is, if X is distributed other than the

 78

Normal distribution, then Normal 2X (,)dist
n μ σ→∞⎯⎯⎯→ . Formally restating the CLT

[Casella and Berger, 2002:236]

 Central Limit Theorem: Let X1, X2, ... Xn be a sequence of n independent,
and identically distributed (iid) random variables whose moment
generating functions (mgfs) exist in a neighborhood of 0 (that is, ()

iXM t
exists for |t |< h, for some positive h). Let E(Xi) = μ and Var(Xi) = σ2 > 0.
(Both μ and σ2 are finite since the mgf exists). Define

1
(1/) n

n ii
X n X

=
= ∑ .

Let Gn(x) denote the cumulative distribution function (cdf)
of () /nn X μ σ− . Then, for any x, -∞ < x < ∞,

2

21lim () ;
2

y

nn
G x e dy

π
∞ −

−∞→∞
= ∫ (3.37)

that is, () /nn X μ σ− has a limiting standard normal distribution.

The proof using the properties of the mgfs is provided in Casella and Berger [2002:237-

238]. Note the assumption of finite variance and independence. The finite variance

assumption is essentially necessary for the convergence to normality and cannot be

eliminated [Casella and Berger, 2002:237].

 The idea is to replace the entire simulation model, at least the portion that is being

aggregated, with a prediction model (MetaSim) that is based on the use of the CLT along

with a collection of fewer random variates which are determined to be “important”. As

previously described, the “important” variables are determined using a statistical

technique called step-wise regression [Dillon and Goldstein, 1984:239-242]. A visual

representation of the process will now be illustrated in order to better understand this

technique. Consider for instance the flow of a notional “full” model in Figure 26. In

order to capture the two outputs, the entities flow through the entire path for some

duration (simulation run length) and are repeated according to the number of specified

simulation replications (n).

 79

Figure 26 - Full Model Flow Example

The goal of the MetaSim is to exploit the random variates in the full model and build a

representation of the same model using fewer random variates as depicted in Figure 27

and predict the desired outputs within some error tolerance.

Figure 27 - MetaSim Model Flow Example

As depicted in the sample flow diagram in Figure 26, in order to capture the two

simulation outputs, the entities flow through eleven random variates (rv). After

performing the control variable selection of step-wise regression on the eleven random

variates, we observe that a total of only seven random variates were necessary to build a

new prediction model, which are the solid boxes in Figure 27.

 80

 To fully understand how to implement the new proposed metamodeling

technique, we now describe the general MetaSim algorithm (the pseudo-code for the

MetaSim is located in Appendix E). Note that since this technique uses an embedded

regression method on the random variates, the algorithm described next is for treatment

of one output at a time for each scenario. Since the set-up is per scenario, the controls

considered at this time are that of the random controls only since the settings of the

simulation input X will not change within a scenario.

MetaSim Algorithm

Step 0.1: Collect raw data from simulation model for use in the random variate

regression (i.e., using the control variate technique). Assume data from the simulation

model input is in the form n x d where n is the data sample size (number of simulation

replications) and d is the dimension of the data (i.e., the controls are the number of

random variates collected). For the target data (i.e., response is the actual simulation

model output) the data from the simulation is in the form n x 1.

Step 0.2: Perform regression on the controls. Specify the response, controls and α-level

for the regression.

Step 1: Collect observations from the raw data and control variate technique for input

into the MetaSim.

 1a: Collect user-specified mean used in the simulation in the form 1 x d. For

every random variate collected from the simulation, calculate the expected value and

standard deviation for those specific work or routing variables [Bauer and Wilson, 1993]

(i.e., given a distribution in a certain process or decide module, calculate the implicit user

input mean (
acμ) and standard deviation). In order to calculate the means and standard

deviation for several distributions, see Law [2006:282-309].

 1b: For each controls, collect the following per replication: the number of

occurrences (count), the average value of the controls (c), and its standard deviation (s).

 1c: From the control variate technique, collect: the intercept β0, the β weights and

the corresponding indices of “in” and “out” variables in the form 1 x d. The “in” variable

 81

indices will ensure that the weights are being applied to only the appropriate “in”

controls.

Step 2: Perform MetaSim technique.

The equation for the MetaSim in matrix form is as follows

l [] 1 CY = # β (3.38)

where lY : is a (1 x 1) predicted output of the MetaSim

 1: is a (n x 1) column of ones representing the intercept term β0

C: is a (n x d) vector of d potential random controls C1,C2,…,Cd from n

replications

β: is a ((1+d) x 1) column vector of unknown parameters β0, β1,…, βd where β0 is

called the intercept term, and β1,…, βd are the regression coefficients or weights

associated with the random controls.

The vector of random controls C is the value c calculated as follows

() for = 1,2,...,c =
a

a cc a dμ− (3.39)

and ac is estimated by

Normal ,= a
a a

a

sc c
count

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.40)

where the parameters for the normal distribution are estimated from the average of each

individual collected control ac . Note that subtracting the user-input mean,
acμ , from the

collected controls inside the MetaSim algorithm is only necessary if this part of the

calculation haven’t already been previously performed.

 82

The least squares estimate of the β is the value b and is calculated as follows

() 1T T
train train train train trainb = C C C Y

−
 (3.41)

where trainC is the training data random control input and trainY is the training data output.

Note that a training dataset needs to be predefined to obtain the b estimates in equation

(3.41) to apply to the testing data in order to obtain the testing data predicted values.

Thus, the predicted value (as it is applied to the testing dataset) is given by

 l
test 0 test train+ C bY β= (3.42)

where l testY is the MetaSim prediction, testC is the new (test) data input and trainb is the

least squares estimate of the β derived from the control variate technique performed on

the training data. Note that the simulation input data X can be included as part of the

controls when building a MetaSim using data from all the scenarios since the settings of

the input data changes accordingly by scenario. This set-up should be considered when

trying to build a model that can predict new input settings; that is, new model inputs that

have not been previously simulated. For this set-up, the form of the regression prediction

will be given by

l
test 0 test train train train+ X b + C gY β= (3.43)

where l testY : is a (1 x 1) predicted output of the MetaSim

 β0: is the (1 x 1) intercept of the regression from the training data

 X: is a (n x d) vector of potential design variables

b: is a (d x 1) column vector β estimate of unknown parameters called partial

regression coefficients or weights associated with the design variables

 C: is a (n x d) vector of potential random controls from the training data

 83

g: is a (d x 1) column vector γ estimate of unknown parameters called partial

regression coefficients associated with the random controls.

Similar to the extension discussed for the regression method in M6, an extended set of

predictions can be provided to the analyst. The only difference is on the size of the input

matrix which now includes the significant controls, i.e., train train]X = [1 X C# . For

situations where we have a new set of design variable(s) and no previous runs are

available, the question of what to use for the random controls estimate needs to be

addressed. We propose using the assumption that each control (with user mean already

subtracted) is in the form Normal(cμ , cσ). For each significant controls identified, we

use the assumption that cμ = E ()a
a cc μ− and derive the standard deviation from the

training data (obtained from previous simulation runs) using

1

1 =1,2,...,
n

ai
c

i ai

s a d
n count

σ
=

= ∀∑ . (3.44)

To illustrate, the form of the input matrix (assuming one new design point), X0, that will

be used in the regression will be

1 10 1[1 Normal(,) ... Normal(,)]
d dc c c cX X μ σ μ σ= . (3.45)

For our predictions we assume a normal distribution and generate the regression

predictions based on

l l l'
0 0 0(, ())Y Normal Y Var Y= (3.46)

where, l 0Y , the value predicted at X0 by the regression equation given by

 84

l
0 0 trainX bY = (3.47)

btrain is calculated similar to equation (3.21) where Xtrain includes the control variables,

i.e., train train]X = [1 X C# .

Similar to equation (3.24), Var(l 0Y) is given by

l () 1' ' 2
0 0 train train 0() X X X XVar Y σ

−
= (3.48)

where σ2 in equation (3.48) is typically unknown and is thereby estimated by s2 using

[Dillon and Goldstein, 1984:226]

() ()'
train train train train train train2 Y X b Y X b

s
n p

− −
=

−
 (3.49)

where n: total of observation (or replication runs in the simulation)

p: total number of β parameters that need to be estimated, including the intercept

β0.

Note that unlike equation (3.43) where the weights are separated for the design and

control variables, the β parameters in equations (3.47) and (3.49) also include the weights

for the random controls.

3.7 Training and Testing Data Set-up

In general, we want to be able to test the reliability of our regression and ANN model so

we need to separate our data between training and testing sets. We generally build the

model using the training set and test the generalizability of the network by supplying it

with another set of data that it has never previously encountered. The motivation here is

to validate the model on a dataset that is different from the one employed during

 85

parameter estimation. This is the premise for a whole class of model evaluation

techniques called cross-validation. There are different variants of the cross-validation

that are typical in practice; they are: hold-out method, multifold (or k-fold) cross-

validation, and the leave-one-out method [Haykin, 1999:213-218].

 The hold-out method is the simplest and most commonly used cross-validation

technique. The data is partitioned into two sets, called the training and the testing sets.

The Regression and/or ANN fits a function using the training set only, then the network

is used predict the output values for the unseen data in the testing set. The errors

calculated on the testing data are used to evaluate the model. This method is typically

preferred over the residual method since the extra effort is not too taxing. That is, the

only extra effort required is to partition the data into two sets and perform two sets of

error predictions. Unfortunately, the error evaluation could have a large variance and is

heavily dependent on how the partition is accomplished [Devijver and Kittler, 1982:10].

 Multifold (k-fold) cross-validation is one way to improve on the hold-out method.

The available dataset of n samples (exemplars) is divided into k subsets, k > 1; typically k

is divisible into n. The model is trained on k-1 subsets and the validation error is

measured on the testing subset, which is left out of the training set. The process is

repeated k times. The error performance is evaluated by averaging the error of the left-

out subsets over the k trials. The variance in this method is less apparent the larger k is;

however, the training algorithm will need to be run k times, where 1 < k ≤ n, which would

imply that it takes k times more computation for an evaluation [Haykin, 1999:218].

 Leave-one-out cross-validation is the extreme form of the multifold cross-

validation and is computationally very expensive, with k = n. This technique is typically

useful when there is a limited number of available data. For this method, n-1 samples are

used to train the model and the validation error is measured on the one left out sample.

The process then proceeds in the same manner as the multifold cross-validation.

 Once the cross-validation method has been chosen for use in the training and

testing data set-up for simulation input/output data, the question of how to partition the

data needs to be considered. That is, should the data be partitioned between scenarios

using all replications or between replications across all scenarios? Based on the results of

 86

our experiments, the analyst should partition the data using all the scenarios and partition

the training/testing data accordingly (e.g., ~80/20 rule) across replications. The reason

for this is to ensure that the training model has had sufficient amount of coverage to

ensure proper training. The partitioning should be randomized; however, the analyst

needs to keep track of the proper pairing of the input/output relationship to ensure the

appropriate data are being compared. In addition, with randomization, the analyst needs

to ensure that the results are repeatable. Thus, setting some set random seed needs to be

considered. For ease of demonstration, no randomization is employed in the sample

described next.

 Consider three simulation inputs with two settings at high and low using a full-

factorial design (i.e., 23 = 8). In addition, assume at each setting (scenario) that the

number of replications (n) is 100, for a total of 800 sample data points (or exemplars).

Employ the general rule of ~80/20 cross-validation data partitioning for training and

testing, respectively. The k-fold, where k = 5, data set-up example is displayed in Table

14. This method, as previously mentioned, is similar to the hold-out method repeated k-

times. Recall that data evaluation for the k-fold will be based on the average output for

all the folds.

Table 14 - k-Fold (k = 5) Method Cross-Validation Set-up

Fold Scenario # Training Data:
Replication #

Testing Data:
Replication #

1

1 1-80 81-100
2 1-80 81-100
...
8 1-80 81-100

2

1 1-60, 81-100 61-80
2 1-60, 81-100 61-80
...
8 1-60, 81-100 61-80

3

1 1-40, 61-100 41-60
2 1-40, 61-100 41-60
...
8 1-40, 61-100 41-60

4

1 1-20, 61-100 21-40
2 1-20, 61-100 21-40
...
8 1-20, 61-100 21-40

5 1 21-100 1-20
 2 21-100 1-20

 8 21-100 1-20

All Folds Total 3200 exemplars 800 exemplars

 87

Now as an example of the hold-out method, use the first 80 replications per scenario from

the simulation model to train the regression and the ANN as depicted in Table 15. The

last 20 replications within a scenario for all scenarios should be used to examine the

ability of the regression and the ANN to generalize to previously unseen combination

samples. Thus, for the lower-level model output, use 640 exemplars to train the

regression and ANN models and use 160 exemplars for testing.

Table 15 - Hold-out Method Cross-Validation Set-up

Scenario # Training Data:
Replication #

Testing Data:
Replication #

1 1-80 81-100
2 1-80 81-100
...
8 1-80 81-100

Total 640 exemplars 160 exemplars

A demonstration of the use of each method will be accomplished on the application

models in Chapters 4 and 5. That is, for the Flying Training Model in Chapter 4, the

hold-out method for cross-validation will be used; for the ALS Sortie Generation Model

in Chapter 5, the k-fold validation will be used.

3.8 Higher-Level Model Output Comparison

The model outputs of the alternative techniques are not immediately evaluated (compared

to the truth model) at the lower level. Rather, the intent is to determine the effects of the

metamodeling techniques on the output(s) of the higher-level model. After running the

lower-level model(s) and feeding their output, using the DM and the different alternate

methods, as an input into the higher-level model, we need to determine if any of the

alternate methods are significantly different from the Direct Method approach. For this

comparative analysis we propose utilizing the paired-t confidence interval approach as

described in Law [2006:558-560] to form the approximate 100(1-α) percent simultaneous

confidence interval (Bonferroni inequality) where we set the DM approach as the

standard to compare all other methods to. The analysis is carried out to examine how the

 88

various aggregation techniques at the lower-level can handle reproducing the actual

simulation model at the higher level and to evaluate the alternative aggregation

techniques’ ability to perform general prediction of the simulation model.

Performance Estimation

In order to determine the accuracy of the metamodeling technique, some form of

performance estimation has to be established. The simulation model output will be

considered truth and the prediction model output will be compared to this. The

metamodel, along with the appropriate feature selection/extraction and VRT, with the

smallest error function mean absolute error (MAE) will be considered “best” for that

specific application. MAE will be calculated as:

(sim out - pred out)

MAE =
n

∑ (3.50)

where sim out: simulation output (truth)

 pred out: aggregated model predicted output

 n: number of simulation replications.

In addition to the MAE, the mean absolute percent deviation (MAPD) [Alam et

al., 2004], defined as

(sim out - pred out) / sim out
MAPD =

n
∑ (3.51)

will also be used to compare the relative performance of the different aggregation

techniques. Measuring the percent deviation in addition to the actual deviation enables us

to scale the results and provides a common measure of performance.

When comparing MAE between the DM and the different aggregation

methodologies (Method 1 (M1) to Method 8 (M8)), we need to know if the difference

 89

from the standard is statistically significant. For this analysis we will use the method

described in Sections 10.2-10.3 in Law [2006:552-561] to determine if the alternative

methods are significantly different from the Direct Method approach. The alternate

method that is not statistically different from the DM approach and has the smallest error

function MAE from DM will be considered “best” alternative for that specific simulation

application in terms of means comparison. Next, we describe how to apply the method of

paired-t confidence interval comparison described in Law [2006:552-561].

If the number of models (DM vs. M1-M8) being compared is represented by m,

then q = 1, 2,…, m (in this example, m = 9). Let the number of samples be denoted by n

where n is the number of simulation replications. This allows the confidence interval to

be tested with a paired-t test if the number of samples is greater than 30 and it is assumed

that each of the samples is independent and identically distributed (IID). For m models,

let Mq1, Mq2, …, Mqn be a sample of n IID samples from q models and define Zqi = M2i-

M1i, M3i-M1i,…, Mmi-M1i, for i = 1, 2,…, n. Thus,

() 1

n

qi
i

q

Z
Z n

n
==
∑

 (3.52)

and

n ()
()

()

2

1

1

n

qi q
i

q

Z Z n
VAR Z n

n n
=

⎡ ⎤−⎣ ⎦
⎡ ⎤ =⎣ ⎦ −

∑
 (3.53)

and form the paired-t confidence interval

() n ()1,1 /q n c qZ n t VAR Z nα− − ⎡ ⎤± ⎣ ⎦ (3.54)

where the lower bound is represented by subtracting (-) the paired-t and the upper bound

by adding (+), here c = m – 1 is the number of model intervals to be compared and the α

in the paired-t is typically chosen to be equal to 0.05 or 0.10. If the calculated differences

 90

are normally distributed, the confidence interval is exact; otherwise, the central limit

theorem will guarantee that the coverage will be near 1-α for large n.

 In addition to determining if the difference in the means between the Direct

Method and the other methods are significantly different, additional comparisons can be

performed to assess the differences/similarities in the simulation outputs. The methods

discussed next are typical simulation input assessments discussed in Law [2006:330-359]

for determining how representative the input fitted distributions are. In our application,

we will use these techniques in assessing the similarities/difference in the outputs of the

Direct Method as compared to the different aggregation methods. Graphical

comparisons, such as the probability density function (pdf) and/or cumulative distribution

function (cdf) comparisons, could prove beneficial in evaluating the different simulation

outputs (see Law [2006:331-333] on how to build a pdf and a cdf). The pdf, typically

designated as f(.), plot presents how much of the distribution of a random variable is

found in a given area. On the other hand, the cdf, denoted by F(.), gives us the area under

the pdf, up to a certain value. The pdf and the cdf provide a complete description of the

probability distribution of some random variable and contain the same information

[Casella and Berger, 2002:36]. Mathematically, the cdf of a continuous random variable

X is given by [Casella and Berger, 2002:29]

0
() () () ,

x
F x P X x f t dt x= ≤ = ∀∫ (3.55)

and the pdf is a function that satisfies [Casella and Berger, 2002:35]

() () ,
x

F x f t dt x
−∞

= ∀∫ . (3.56)

Thus, if the random variable X has a density function f(x) such that for a ≤ b, the

probability that X falls in [a, b] is [Wackerly et al., 1996:143] given by

 91

() ()
b

a
P a X b f x dx≤ ≤ = ∫ . (3.57)

In addition, a further relationship between the cdf and the pdf is defined below [Casella

and Berger, 2002:35]

() ()d F x f x
dx

= . (3.58)

Graphically, the pdf and the cdf are represented in Figure 28.

f(x)

F(x)

1

0

a

a

F(a)=P(X≤a)

P(X≤a)

Figure 28 - Graphs of the pdf and cdf

Overlaying the different pdf and/or cdf of the different outputs on the same graph

provide the analyst a direct visual comparison of the data. Sometimes the difference may

not be directly apparent on the direct graphical comparison, thus graphing the differences

between the different functions might be more helpful. For the cdf comparisons, the

analyst could build the distribution-function-differences plot [Law, 2006:333-334] in

order to visualize the difference between the different cumulative distribution functions.

 92

If the two distribution functions that are being compared are a perfect fit then the plot will

be a horizontal line. This comparison can be done using the ExpertFit® software using

the advance mode and performing the Homogeneity-Tests on the different distribution

functions. In addition to the distribution function comparison, the histograms (pdf

representation) can also be compared graphically and their corresponding frequency-

comparison errors plotted. Determining the number of intervals is an art rather than a

science, thus this portion of the histogram comparison needs to be played with.

To mathematically assess the pdf and the cdf, the analyst could calculate the

cross-entropy between the density functions and/or perform the Kolmogorov-Smirnov (K-

S) test between the distribution functions. Cross-entropy is calculated as follows [Duda

et al., 2001:318]

=1

sim outCE = sim out ln
pred out

n
i

i
i i

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ (3.59)

where sim out: simulation output (truth)

 pred out: aggregated model predicted output

 n: number of simulation replications.

The cross-entropy value will be close to zero when the density functions are similar and

equal to zero when the density functions are identical. To assess the cdf, the empirical

distribution functions can be compared using the two-sample K-S test. For a full

discussion on the K-S test, see Law [2006:346-351]. For our comparison purpose, we

utilize the K-S test for two samples that tests the hypothesis H0: ℘sim =℘pred that the DM

simulation (sim) output and the alternate aggregation method simulation output (pred)

come from the same distribution using the Matlab function kstest2. Suppose that the DM

method output Y1,…,Yn has a distribution with cdf Fsim(y) and the alternate method

simulation output Y’1,…Y’n has a distribution with cdf Gpred(y’), we need to test H0: Fsim =

Gpred versus Ha: Fsim ≠ Gpred, where the alternative hypothesis is when the simulation

outputs from the DM and the alternate method come from different continuous

 93

distributions. The K-S statistic Dn is measure of the closeness (largest vertical distance)

between the two distribution functions and is formally defined as [Law, 2006:347]

{ }sim pred = sup () (')n
x

D F y G y− . (3.60)

If Fsim(y) and Gpred(y’) are similar, then the K-S statistic will be close to zero and if

identical, the K-S statistic will be equal to zero . The kstest2 function in Matlab [Matlab,

2007] is as follows

[, ,] = kstest2(sim output,pred output)H p ksstat (3.61)

where H = 1 or 0, reject H0 or fail to reject H0, respectively

 p: asymptotic p-value

 ksstat: K-S statistics Dn.

3.9 Chapter Summary

This chapter provides the description for the different aggregation methodologies

implemented in this research. Section 3.2 describes the ANN feasibility study on the

Law and Kelton [1991] inventory problem. In Section 3.3 the proposed overall

aggregation process is outlined. In Section 3.4 the methodology to mathematically

represent and decompose a discrete event simulation model for aggregation is described

along with a sample problem. Next, the method for determining the number of

replications in a simulation model to obtain a desired precision accuracy for output(s) of

interest is described in Section 3.5. The different aggregation methodologies

implemented in this research are detailed in Section 3.6 and a brief summary of these

techniques are provided in Table 16 where new or expansion to existing methods are

indicated with an asterisk. Section 3.7 explains the set-up for the training and testing data

for use in the regression and ANN methods. Finally, Section 3.8 provides a description

of how the lower-level and higher-level model outputs are compared for evaluation and

 94

specifies the performance estimation techniques that will be employed to determine the

appropriateness and accuracy of the metamodeling techniques used.

Table 16 - Aggregation Methodology Summary
Method Short Name Brief Description Comments

Mean (ilY)
Method 1

(M1)
- simplest method
- average across all observations
and replications; grand mean

- use all available data for
prediction
-prediction based on per
scenario

Normal , sY il
J

⎛ ⎞
⎜ ⎟
⎝ ⎠

 Method 2
(M2)

- given sample size is large, J ≥
30, assumes data are normally
distributed with mean parameter
derived from M1 and standard
error (se) of the mean

- use all available data for
prediction
-prediction based on per
scenario

MeanCV � �()()iYμ β Method 3
(M3)

- uses mean derived from the
control variate (CV) technique
- uses the Bauer and Wilson
[1993] standardized controls

- use all available data for
prediction
-prediction based on per
scenario

l l() CV 11 Normal (,)
i iY Y sεμ β μ σ∼ Method 4

(M4)

- given sample size is large, J ≥
30, assumes data are normally
distributed with mean parameter
derived from M3 and se

- use all available data for
prediction
-prediction based on per
scenario
- goal is for se to be smaller
than se from M2

Distribution Fitting Method 5
(M5)

- uses all the data (down to the
observation level) of each lower-
level output and fits a distribution
using Arena®’s Input Analyzer

- use all available data for
prediction
-prediction based on per
scenario

Regression Method 6
(M6)

- uses the ordinary least squares
approach
- uses one regression equation
per simulation output
- uses step-wise regression for
design variable (inputs) selection

- partition data into training
and test sets
- predictions based on test set
across all scenarios
- works with new design vars,
esp. useful when new sim
runs do not exist

Regression with Controls* Method 6.1
(M6.1)

- a novel expansion of M6 where
the random controls are included
as predictors

- partition data into training
and test sets
- predictions based on test set
across all scenarios
- works with new design vars,
esp. useful when new sim
runs do not exist

Artificial Neural Network
(ANN)

Method 7
(M7)

- uses FANN, RBF, and GRNN
- uses one ANN model for all
simulation outputs

- partition data into training
and test sets
- predictions based on test set
across all scenarios
- works with new design vars,
esp. useful when new sim
runs do not exist

ANN with Controls* Method 7.1
(M7.1)

- a novel expansion of M7 where
the random controls are included
as features

- partition data into training
and test sets
- predictions based on test set
across all scenarios
- works with new design vars,
esp. useful when new sim
runs do not exist

MetaSim* Method 8
(M8)

- a novel technique where the
random variates in the control
variate (CV) technique (used in
M3 and M4) are replaced with an
estimate using the Normal
distribution

- if prediction is based on
each lower-level scenario,
input matrix only contains the
control vars
- if prediction is based on all
the scenarios, include the
design vars with the control
vars in the input matrix
- works with new design vars,
esp. useful when new sim
runs do not exist

*New or expansion to an existing methodology

 95

IV. Application I: Flying Training Model (FTM), Results and Analysis

4.1 Overview

This chapter details how the proposed aggregation process discussed in Chapter 3 could

be applied to one of our application models, the Flying Training Model. The initial

approach used in this research was to use a simulation model of a fairly complex flying

training model. For our first case study, we apply our framework on a modified flying

training simulation model from a previous study. The construction or acquisition of

hierarchical models is a significant step since this will enable the application and testing

of the various aggregation techniques proposed. Several assumptions were required in

order to simplify and adjust the original flying training model for the purpose of analysis.

So, while the data and the modeled process are “real,” the outcome of the model are not

intended to have any real substantive value but merely to illustrate the methods, and

perhaps provide a guideline on how to implement the different proposed aggregation

techniques.

4.2 Flying Training Model

4.2.1 Model Assumptions

Several assumptions were required in order to simplify the original flying training model

and for the purpose of initial analysis used in this research. In order to proceed with the

experiment, the first assumption is that the experimental model is valid as simulated and

represents truth. Although the original model simulates the three-way interaction of

three aircraft platforms, the modified version now consist of only two aircraft platforms

interacting at separate bases at the lower-level models. Another assumption is that the

hierarchical flying training model built will be closely representative of what combat

modeling hierarchical model exists in the field. Typically, the analyst will not have the

luxury of building the models at the two different hierarchical levels. The analyst usually

enters the phase where the models have already been built and the task at hand is the

 96

aggregation of the models between the two levels. Thus, the aggregation is not in the

actual manipulation of the aggregation of the simulation model entities/processes, rather

the aggregation of the simulation output (in the lower-level models) and the simulation

input (into the higher-level model).

4.2.2 Model Description

The flying training model was built using Rockwell Software’s ARENA™ Version 10.0

entity-based simulation software. The simulation represented the flying portion of C-17,

C-5 and KC-135 pilot training, which is illustrated in Figure 29. This model simulated

aircraft scheduling for one year of various combinations of C-5s, KC-135s and C-17s.

The full model is comprised of two models at the lower level and one at the next higher

level, as depicted in Figure 30. The original flying training model came with a user

provided syllabi for all three platforms, with consideration to future training starting in

FY07 which were used to model sortie profiles. Base A Model and Base B Model were

comprised of C-5/KC-135 and C-17/KC-135 interactions, respectively. On the other

hand, Base C Model simulated a three-way aircraft interaction for a non-specific pilot

type (generic). Table 17 depicts the different types and number of pilots simulated in the

three models.

Pilots

Pilot Pair Entry

Weather/Ceiling
Maintenance

Enough time for sortie duration
Acft Availability

Fly Sortie 1

Air Refueling
VFR
IFR

Low Level

Check

Check

Proficiency Refly

Delay

Continue Next Sortie

GO!

Inputs: GPRD
and Acft Resource

Output: Avg Time
In System (TiS)

NO

YES

GO!

Pilots

Pilot Pair Entry

Weather/Ceiling
Maintenance

Enough time for sortie duration
Acft Availability

Fly Sortie 1

Air Refueling
VFR
IFR

Low Level

Check

Check

Proficiency Refly

Delay

Continue Next Sortie

GO!

Inputs: GPRD
and Acft Resource

Output: Avg Time
In System (TiS)

NO

YES

GO!

Figure 29 - Flying Training Process

 97

Each of the pilot types were modeled with their respective courses (e.g., Aircraft

Commander Air Drop, Aircraft Commander Aerial Refueling, etc.). The model included:

crew rest, weather, sunrise/sunset, unscheduled maintenance, Bird Aircraft Strike Hazard

(BASH), and proficiency reflies. The model expended resources such as aircraft, Visual

Flight Rules (VFR) airway, Instrument Flight Rules (IFR) airway, Aerial Refueling (AR)

and Low-level (LL) airways as each pilot flowed through every sortie in the training

schedule. Sorties contained multiple training requirements for different types of pattern

work, i.e., VFR, IFR, AR, and LL. A visual representation in Arena layout of sortie flow

for one of the pilot types for Base A Model is presented later in Figure 31. The pattern

times for each sortie, which were typically normally distributed, were assigned per

subject matter experts (SMEs) recommendation.

Higher Level
Model

Base C
(C-17/C-5/KC-135)

Model

Pilot GradsC TiSC MC RateC

Base A
(C-5/KC-135)

Model

Base B
(C-17/KC-135)

Model

3 TiSB

C-5 Resource
KC-135 Resource

C-17 Resource
KC-135 Resource

C-5 ACAR Pilot Total
KC-135 PIQ Pilot Total
KC-135 IAC Pilot Total

C-17 IAC Pilot Total
C-17 PIQ Pilot Total

KC-135 AC Pilot Total

Lower Level
Models

3 TiSA

Higher Level
Model

Base C
(C-17/C-5/KC-135)

Model

Pilot GradsC TiSC MC RateC

Base A
(C-5/KC-135)

Model

Base B
(C-17/KC-135)

Model

3 TiSB

C-5 Resource
KC-135 Resource

C-17 Resource
KC-135 Resource

C-5 ACAR Pilot Total
KC-135 PIQ Pilot Total
KC-135 IAC Pilot Total

C-17 IAC Pilot Total
C-17 PIQ Pilot Total

KC-135 AC Pilot Total

Lower Level
Models

3 TiSA

Figure 30 - FTM Full Model

Table 17 - FTM Pilot Types
Level Model Pilot Types
Higher Base C 1 generic
Lower Base A 6 C-5 and 7 KC-135
Lower Base B 11 C-17 and 6 KC-135

4.2.3 Simulation Input and Output Parameters

There are several input parameters associated with this system as depicted in Table 18,

but in able to make the initial analysis manageable, only a few of the input parameters

were selected to vary as depicted in Table 19. Let all the key input factors from both

lower-level (LL) bases A and B be denoted by XA1, XA2, XA3, XA4, XA5, XB1, XB2, XB3, XB4

and XB5, respectively. The main rationale in choosing the specific Pilot Type parameters

is due to its size (number of entries) as compared to the other parameters (e.g., KC-135

 98

SOC had total programmed annual entry of 30, while KC-135 PIQ had 206) and to get a

larger range for inputs. The outputs of interest at the lower level were the time in system

(TiS) for three different pilot types for Models A and B corresponding to the pilot type

entries chosen as the inputs (i.e., C-5 ACAR TiS, KC-135 PIQ TiS, and KC-135 IAC

TiS, C-17 IAC TiS, C-17 PIQ TiS, and KC-135 AC TiS) and denoted by YA1, YA2, YA3,

YB1, YB2, and YB3, respectively. Table 20 depicts the chosen output measures of

performance for the FTM at the lower-level.
Table 18 - FTM LL Input Features/Variables

Feature/Variable Description Base Initial Value Units
C_5 ACAR Pilot Total Total annual entry for the C-5 ACAR pilots A 12 pilots
C_5 SOC Pilot Total Total annual entry for the C-5 SOC pilots A 0 pilots
C_5 IP Pilot Total Total annual entry for the C-5 IP pilots A 72 pilots
C_5 IAC Pilot Total Total annual entry for the C-5 IAC pilots A 12 pilots
C_5 AC Pilot Total Total annual entry for the C-5 AC pilots A 8 pilots
C_5 ACIQ Pilot Total Total annual entry for the C-5 ACIQ pilots A 10 pilots
KC_135 AC Pilot Total Total annual entry for the KC-135 AC pilots A 150 pilots
KC_135 SOC Pilot Total Total annual entry for the KC-135 SOC pilots A 30 pilots
KC_135 ACIQ Pilot Total Total annual entry for the KC-135 ACIQ pilots A 68 pilots
KC_135 IP Pilot Total Total annual entry for the KC-135 IP pilots A 245 pilots
KC_135 ACRQ Pilot Total Total annual entry for the KC-135 ACRQ pilots A 34 pilots
KC_135 PIQ Pilot Total Total annual entry for the KC-135 PIQ pilots A 206 pilots
KC_135 IAC Pilot Total Total annual entry for the KC-135 IAC pilots A 92 pilots
C_5 Fleet Resource Number of available C-5 aircraft (A/C) A 2 A/C
KC_135 Fleet Resource No. of available KC-135 aircraft A/B 10 A/C
C_17 Fleet Resource No. of available C-17 aircraft B 8 A/C
C_17 IAC Pilot Total Total annual entry for the C-17 IAC pilots B 114 pilots
C_17 PIQ Pilot Total Total annual entry for the C-17 PIQ pilots B 392 pilots
C_17 SOC Pilot Total Total annual entry for the C-17 SOC pilots B 20 pilots
C_17 ACAD Pilot Total Total annual entry for the C-17 ACAD pilots B 40 pilots
C_17 AC Pilot Total Total annual entry for the C-17 AC pilots B 154 pilots
C_17 IP TPS Pilot Total Total annual entry for the C-17 IP TPS pilots B 109 pilots
C_17 ACRQ Pilot Total Total annual entry for the C-17 ACRQ pilots B 18 pilots
C_17 IP DDS Pilot Total Total annual entry for the C-17 IP DDS pilots B 85 pilots
C_17 CAD Pilot Total Total annual entry for the C-17 CAD pilots B 80 pilots
C_17 ACIQ Pilot Total Total annual entry for the C-17 ACIQ pilots B 94 pilots
C_17 IP AD Pilot Total Total annual entry for the C-17 IP AD pilots B 31 pilots
AR Pattern Tanker Set No. of available local air refueling pattern for the tankers

(KC-135s)
A/B 400 airway

AR Pattern Rcvr Set No. of available air refueling pattern for the receivers (C-
5s and C-17s)

A/B 4 airway

CS VFR Pattern No. of available visual flight rule air pattern for local A/C
at CS location

A/B 3 airway

IFR Pattern No. of available instrument flight rule air pattern for local
A/C

A/B 8 airway

KC_135 IFR Fly_away
Resource

No. of available instrument flight rule air pattern for non-
local A/C

A/B 99 airway

KC_135 LL Fly_away
Resource

No. of available low-level air pattern for non-local A/C A/B 99 airway

KC_135 VFR Fly_away
Resource

No. of available visual flight rule air pattern for non-local
A/C

A/B 99 airway

LL Pattern No. of available low-level air pattern for local A/C A/B 20 airway
Sooner ALZ No. of “extra” assault landing zone A/B 3 airway
Tactical Pattern No. of airway for tactical pattern maneuvers A/B 4 airway
Tanker Track Not in Altus No. of available non-local air refueling pattern for the

tankers (KC-135s)
A/B 396 airway

VFR Pattern No. of available visual flight rule air pattern for local A/C A/B 4 airway

 99

Since the only sets of original inputs were at one level, an experimental design

was set up for each base for the five different sets of input for use in the simulation and

metamodeling. Once again, to keep the data more manageable at this time, only two

levels were considered for each input parameter. For the pilot type entries, the original

given entries and either the +5% or -5% from the original were considered. In addition,

since the number of available aircraft is very limited, as an additional level, an increase of

one aircraft was its form of variation. Thus, we consider a two-level full-factorial design

of five factors that result in 25 = 32 different scenarios for each base at the lower level of

the hierarchical simulation. Tables 21 and 22 depict the different combinations of the

varying input parameters for Bases A and B, respectively.

Table 19 - FTM LL Key Input Factors Design of Experiment

Feature/Variable Base Original
Value - 5% + 5% Feature

Designator
C-5 ACAR Pilot Total

A

12 11 --- XA1
KC-135 PIQ Pilot Total 206 --- 217 XA2
KC-135 IAC Pilot Total 92 87 --- XA3
C-5 Fleet Resource 2 --- +1 XA4
KC-135 Fleet Resource 10 --- +1 XA5
C-17 IAC Pilot Total

B

114 --- 120 XB1
C-17 PIQ Pilot Total 392 372 --- XB2
KC-135 AC Pilot Total 150 --- 158 XB3
C-17 Fleet Resource 8 --- +1 XB4
KC-135 Fleet Resource 10 --- +1 XB5

Table 20 - FTM LL Key Output Performance Measures

LL Output Base Output
Designator

C-5 ACAR TiS
A

YA1
KC-135 PIQ TiS YA2
KC-135 IAC TiS YA3
C-17 IAC TiS

B
YB1

C-17 PIQ TiS YB2
KC-135 AC TiS YB3

 100

Table 21 - FTM Base A Input Parameters
Scenario

Run #
C-5 ACAR
Pilot Total

KC-135 PIQ
Pilot Total

KC-135 IAC
Pilot Total

C-5 Fleet
Resource

KC-135 Fleet
Resource

1 11 206 87 2 11
2 11 206 92 2 10
3 12 217 92 3 11
4 11 217 92 3 11
5 12 217 87 2 10
6 12 206 92 2 11
7 12 206 92 2 10
8 11 206 87 2 10
9 12 206 92 3 11

10 12 206 87 2 10
11 12 217 92 2 11
12 12 217 87 3 11
13 12 217 92 3 10
14 12 206 87 3 11
15 11 217 87 2 11
16 11 206 92 2 11
17 12 217 92 2 10
18 11 206 87 3 10
19 12 206 87 2 11
20 12 217 87 3 10
21 12 206 87 3 10
22 12 217 87 2 11
23 11 217 87 3 10
24 11 206 87 3 11
25 11 206 92 3 11
26 11 217 87 3 11
27 11 206 92 3 10
28 11 217 92 3 10
29 11 217 87 2 10
30 11 217 92 2 11
31 12 206 92 3 10
32 11 217 92 3 10

 101

Table 22 - FTM Base B Input Parameters
Scenario

Run #
C-17 IAC
Pilot Total

C-17 PIQ
Pilot Total

KC-135 AC
Pilot Total

C-17 Fleet
Resource

KC-135 Fleet
Resource

1 114 392 150 9 11
2 114 372 158 9 11
3 114 372 150 9 11
4 120 392 150 8 11
5 120 372 150 9 11
6 120 392 158 8 11
7 120 372 158 8 10
8 120 392 150 8 10
9 120 392 150 9 10

10 120 372 150 9 10
11 114 392 150 8 10
12 120 392 150 9 11
13 120 372 158 9 10
14 120 392 158 9 11
15 120 372 158 9 11
16 114 392 158 9 10
17 114 392 158 8 11
18 114 372 158 8 11
19 114 372 158 9 10
20 114 392 150 8 11
21 114 372 150 8 11
22 114 372 158 8 10
23 120 392 158 9 10
24 120 372 158 8 11
25 114 392 150 9 10
26 120 372 150 8 10
27 120 392 158 8 10
28 114 372 150 9 10
29 114 392 158 8 10
30 120 372 150 8 11
31 114 392 158 9 11
32 114 372 150 8 10

Since the aggregation for this model is to within-a-level (logical decomposition),

it is easy to identify the intermediate lower-level model output data for use as input into

the higher level (HL) model. However, this is not always the case when the aggregation

is to within-a-model (structural decomposition), as is the case for the next application

model in Chapter 5. Depending on which portion of the model can be decomposed and

therefore aggregated as a unit, will dictate the intermediate output/input that needs to be

 102

evaluated. Table 23 depicts the higher level model outputs of interest which are: total

pilot grads (TPG), TiS, and mission capability rate (MCR) designated as Z1, Z2, and Z3,

respectively. The entire input/output process at the two levels is best depicted in Figure

30. Appendix B covers more details on the FTM that are not included in this chapter.

Table 23 - FTM HL Key Output Performance Measures

HL Output Short
Name Base Output

Designator
Total Pilot Grads TPG

C
Z1

Time in System TiS Z2
Mission Capability Rate MCR Z3

4.3 Results and Analysis

4.3.1 Mathematical Representation of the Flying Training Model

The decomposition examined for the flying training model is that of the logical

decomposition where the aggregation accomplished is within-a-level (i.e., the entire Base

A Model in the lower-level model in Figure 30 is aggregated as a whole). For this within-

a-level aggregation example we take the entire significant input/output of Base A Model

and aggregate them as a whole.

On the other hand, in order to perform aggregation within-a-model (i.e., structural

decomposition), Base A Model can be further examined and perform the decomposition

within this model to determine what portion of this specific model can be aggregated. In

Figure 31, one of the C-5 ACAR sorties within Base A Model is depicted. The

decomposition can also be performed at this point for a more detailed look at the model.

For this within-a-model look, the input/output within this specific sortie is aggregated.

However, we will focus our attention at this time on the within-a-level model

aggregation, i.e., aggregation of Base A Model. The structural decomposition will be

demonstrated for the sortie generation model in the next application model of the next

chapter.

 103

Figure 31 - FTM Base A Model (C-5 ACAR Sortie 1)

To illustrate the mathematical framework idea, we will demonstrate and define

the network structure of Figure 30. Consider in Figure 32 the directed network graph of

the Full Model (FT Model) from Figure 30.

N6

N3N1

N2 N4

N5

e1 = 5 e3 = 5

e2 = 3 e4 = 3

e5 = 3

Figure 32 - FT Model Network Graph

In the graph, as depicted in Figure 32, its specific graph representation is as follows

G = {V(G), E(G), R(G)} (4.1)

 where:
 V(G) = {N1, N2, N3, N4, N5, N6}, is the vertex set,
 E(G) = {e1, e2, e3, e4, e5}, is the edge set,
 R(G) = {eN1→N2, eN3→N4, eN2→N5, eN4→N5, eN5→N6}, is the set of relations.

 104

Thus, for the graph in Figure 32, its specific adjacency and incidence matrices are

depicted in Figure 33 as follows, respectively

FTM

 N1 N2 N3 N4 N5 N6 e1 e2 e3 e4 e5

N1 0 1 0 0 0 0
N2 0 0 0 0 1 0
N3 0 0 0 1 0 0

()
N4 0 0 0 0 1 0
N5 0 0 0 0 0 1
N6 0 0 0 0 0 0

A G

⎛
⎜
⎜
⎜

= ⎜
⎜
⎜
⎜⎜
⎝

FTM

N1 1 0 0 0 0
N2 1 1 0 0 0
N3 0 0 1 0 0

 ()
N4 0 0 1 1 0
N5 0 1 0 1 1
N6 0 0 0 0 1

M G

⎞ ⎛ ⎞
⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟

=⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟⎟ ⎜ ⎟
⎠ ⎝ ⎠

Figure 33 - a) Adjacency and b) Incidence Matrix of the FT Model

Now that the full model structure has been visually, by means of a network graph, and

mathematically, by defining the elements of the network graph, represented we now

proceed with the model decomposition procedure for the FT Model where we consider its

network graph in Figure 32. Before proceeding with the decomposition procedure, we

can visually assess that there are three subnetworks for the FT Model network graph in

Figure 32 (i.e., one of the subnetwork contains nodes 1 and 2; another contains nodes 3

and 4 and; the last subnetwork contains nodes 5 and 6). We will now verify this visual

assessment with the decomposition method. First we recall the edge incidence matrix

M(GFTM) for the FT Model network graph as previously derived and is shown in Figure

33b. The weight matrix W and the pseudo-covariance matrix C are shown in Figure 34

and Figure 35, respectively. The value of the edges in the weight matrix corresponds to

the number of input data to each node (e.g., e2 = 3 is the number of output data from N2

which in turn is fed into N5).

FTM

 e1 e2 e3 e4 e5

e1 5 0 0 0 0
e2 0 3 0 0 0

 () = e3 0 0 5 0 0
e4 0 0 0 3 0
e5 0 0 0 0 3

W G

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Figure 34 - FT Model Network Graph Edge Weighting Matrix

 105

FTM

5 5 0 0 0 0
5 8 0 0 3 0
0 0 5 5 0 0

 () =
0 0 5 8 3 0
0 3 0 3 9 3
0 0 0 0 3 3

C G

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Figure 35 - FT Model Network Graph Pseudo-Covariance (C) Matrix

The corresponding D matrix and the calculated R matrix from the pseudo-covariance

matrix C is displayed next in Figures 36 and 37, respectively.

FTM

1 0 0 0 0 0
5

10 0 0 0 0
8

10 0 0 0 0
5 () =

10 0 0 0 0
8

10 0 0 0 0
9

10 0 0 0 0
3

D G

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Figure 36 - FT Model Network Graph D Matrix

FTM

 1 0.7906 0 0 0 0
0.7906 1 0 0 0.3536 0
 0 0 1 0.7906 0 0

 () =
 0 0 0.7906 1 0.3536 0
 0 0.3536 0 0.3536 1 0.5774
 0 0 0

R G

 0 0.5774 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Figure 37 - FT Model Network Graph Pseudo-Correlation (R) Matrix

We now need to assess how many subnetworks are present in the larger FTM

network. Table 24 depicts the results of performing the principal component analysis on

the pseudo-correlation matrix R.

 106

Table 24 - FT Model Network Graph Extracted Factors

Factor Eigenvalue Percent of
Variation

Cumulative Percent
of Variation

1 2.00 33.33 33.33
2 1.79 20.37 63.18
3 1.46 24.27 87.45
4 0.54 9.06 96.51
5 0.21 3.49 100.00
6 0.00 0 100.00

Based on the result of the principal component analysis on the R matrix and using

Kaiser’s criterion, we retain three factors. Next we need to find which nodes belong to

what subnetworks. After performing a principal component analysis on the C matrix, we

obtain its initial factor loading in Table 25, followed by its corresponding quartimax-,

varimax-, and equamax-rotated factor matrices in Tables 26, 27, and 28, respectively.

Table 25 - FT Model Network Graph Initial Factor Loadings - C

Node Factor 1 Factor 2 Factor 3
1 -0.433 0.646 -0.513
2 -0.648 0.687 -0.265
3 -0.433 -0.646 -0.513
4 -0.648 -0.687 -0.265
5 -0.782 0.000 0.615
6 -0.354 0.0000 0.607

Table 26 - FT Model Network Graph Quartimax Rotated Factor Matrix - C
Node Factor 1 Factor 2 Factor 3

1 -0.661 0.646 -0.119
2 -0.668 0.687 0.210
3 -0.661 -0.646 -0.119
4 -0.668 -0.687 0.210
5 -0.209 0.000 0.973
6 0.115 0.000 0.693

Table 27 - FT Model Network Graph Varimax Rotated Factor Matrix - C
Node Factor 1 Factor 2 Factor 3

1 -0.661 0.646 -0.119
2 -0.669 0.687 0.210
3 -0.661 -0.646 -0.119
4 -0.668 -0.687 0.210
5 -0.209 -0.000 0.973
6 0.115 0.000 0.693

 107

Table 28 - FT Model Network Graph Equamax Rotated Factor Matrix - C
Node Factor 1 Factor 2 Factor 3

1 -0.922 -0.009 -0.132
2 -0.961 0.010 0.196
3 -0.009 -0.922 -0.132
4 0.010 -0.961 0.196
5 -0.162 -0.162 0.968
6 0.071 0.071 0.695

After examining Tables 26 and 27, we see that the structure of the quartimax- and

varimax-rotated loadings are still not “simple” enough for a meaningful interpretation,

e.g., nodes 1 to 4 are too close to call on which factor they cluster on. We then perform a

different orthogonal rotation on the C matrix using the equamax method. This new

rotation is depicted in Table 28 and we can see that the equamax rotation produced a

much more interpretable result. Based on this table, we see: nodes 1 and 2 load on Factor

1, nodes 3 and 4 load on Factor 2, and that nodes 5 and 6 load on Factor 3. This confirms

the initial visual assessment from earlier on which nodes should cluster together. We

have just demonstrated the reason for trying different rotation methods in order to assess

the best grouping of the nodes.

In addition, if we perform the PCA on the R matrix, we get the initial factor

loading and its corresponding varimax rotated factor matrix in Tables 29 and 30,

respectively.

Table 29 - FT Model Network Graph Initial Factor Loadings - R
Node Factor 1 Factor 2 Factor 3

1 -0.513 0.669 -0.415
2 -0.649 0.669 -0.240
3 -0.513 -0.669 -0.415
4 -0.649 -0.669 -0.240
5 -0.688 0.000 0.619
6 -0.397 0.000 0.783

Table 30 - FT Model Network Graph Varimax Rotated Factor Matrix - R
Node Factor 1 Factor 2 Factor 3

1 -0.938 0.009 -0.066
2 -0.950 -0.004 0.155
3 0.009 -0.938 -0.066
4 -0.004 -0.950 0.155
5 -0.167 -0.167 0.895
6 0.069 0.069 0.873

 108

The nodes in Table 30 load according to our initial visual assessment, similar to

the equamax rotated C matrix, of nodes 1 and 2 loading on Factor 1, nodes 3 and 4

loading on Factor 2, and nodes 5 and 6 loading on Factor 3.

4.3.2 Determining the Number of Replications Based on β

In order to obtain an approximate number of replications based on a specified precision

β, we employed the technique used in Law [2006: 500-501]. This technique enables the

analyst to have control over the confidence-interval half-length (or the precision of the

average output Y). If the output estimate Y is such that Y μ β− = , then Y has an

absolute error of β with a probability of approximately 1-α [Law, 2006:500]. The

Matlab code implemented for Base A, Rep_determination_by_precision_BaseA.m, to

generate the results are provided in Appendix C. The code for Base B is identical except

for the source data change.

The initial conditions for both Models A and B are as follows

i = 30: initial number of replications
k = 3: number of measures of performance per lower-level model
α = .10
αBonferroni =α/2k

Three different βs were examined and the resulting number of replications is

depicted below.

For βA1 = βA2 = βA3 = βB1 = βB2 = βB3 = 0.1 days

βA1: Base A C-5 ACAR TiS = 173 replications
βA2: Base A KC-135 PIQ TiS = 41 replications
βA3: Base A KC-135 IAC TiS = 30 replications
βB1: Base B C-17 IAC TiS = >1000 replications
βB2: Base B C-17 PIQ TiS = >1000 replications
βB3: Base B KC-135 AC TiS = 105 replications

For β1A = β2A = β3A = β1B = β2B = β3B = 0.25 days

βA1: Base A C-5 ACAR TiS = 30 replications
βA2: Base A KC-135 PIQ TiS = 30 replications
βA3: Base A KC-135 IAC TiS = 30 replications

 109

βB2: Base B C-17 IAC TiS = 454 replications
βB2: Base B C-17 PIQ TiS = 459 replications
βB3: Base B KC-135 AC TiS = 30 replications

For βA1 = βA2 = βA3 = βB1 = βB2 = βB3 = 0.5 days

βA1: Base A C-5 ACAR TiS = 30 replications
βA2: Base A KC-135 PIQ TiS = 30 replications
βA3: Base A KC-135 IAC TiS = 30 replications
βB1: Base B C-17 IAC TiS = 116 replications
βB2: Base B C-17 PIQ TiS = 117 replications
βB3: Base B KC-135 AC TiS = 30 replications

A reasonable practical bound would be to choose the days to be no more than 0.5.

With 0.5 as the bound the number of replication runs for both models A and B will be

117 replications, since this is the minimum requirement for Base B KC-135 PIQ TiS in

order to bound the variance of the TiS to be at or below 0.5 days. Choosing 117

replications will meet the entire requirement of 0.5 days precision for all six pilot time in

system for both models. Thus, the average TiS for both models has an absolute error of

at most 0.5 days with a probability of approximately 90%, which means that 90 times out

of 100, the TiS for either model will be at most 0.5 days. Since we had three

simultaneous intervals to construct per model, each interval is at level 96.67% to yield an

overall confidence level of 90%.

4.3.3 Training/Testing Data set-up

The hold-out method for cross-validation was used [Devijver and Kittler, 1982:10] in the

evaluation of the FTM for the regression and the ANN techniques. This method

partitions the data into two groups and is used to train the predictor and the other

remaining set is used to test the predictor. It should be noted that according to Devijver

and Kittler [1982:10], this partitioning method gives a pessimistically biased error

estimate. We employed the general rule of ~70/30 data partitioning for training and

testing data, i.e., the input parameter settings used from the computer simulation to train

the ANN are the first 80 replications per scenario and are depicted in Table 31. The last

37 replications within a scenario were used to examine the ability of the ANN to

 110

generalize to previously unseen combination samples. All the 32 different scenarios were

replicated 117 times, for a total of 3,744 sample data points (or exemplars). Thus, for

each lower-level model output, 2,560 data points were used to train the neural network

and 1,184 data points were used for testing. The test prediction outputs are used to feed

the higher-level model (Model C) and its output is compared to the output when the

Direct Method is employed. It is assumed that the outputs from the simulation for the

Direct Method are the right answers (truth), which is what the ANN outputs are

compared against for accuracy determination.

Table 31 - FTM Hold-out Training/Testing Data Set-up

Scenario # Training Data:
Replication #

Testing Data:
Replication #

1 1-80 81-117
2 1-80 81-117
...
32 1-80 81-117

Total 2560 exemplars 1184 exemplars

4.3.4 Output Comparison

Since the main focus of the different aggregation methodologies are its effects on the

hierarchical simulation, two levels need to be addressed for output comparison which are

the lower- and higher-level outputs. What follows next are the applicable comparisons at

the different levels. Recall at this time the eight alternate aggregation methods:

(1) Method 1 (M1) – Mean (ilY)

(2) Method 2 (M2) – Normal (, il
sY
J

)

(3) Method 3 (M3) – Control Variate (CV) Technique Mean (l l()iYμ β)

(4) Method 4 (M4) – l l() CV 11Normal (,)
i iY Y sεμ β μ σ∼

(5) Method 5 (M5) – Distribution Fitting

(6) Method 6 (M6) – Regression

(7) Method 7 (M7) – Artificial Neural Network (ANN)

(8) Method 8 (M8) – MetaSim

 111

 As far as implementing the eight alternate aggregation methods discussed in

Chapter 3, MetaSim is not implemented for the FTM due to the complexity of the

simulation model and therefore no results are shown for this particular aggregation

method. However, in order to demonstrate this technique, MetaSim is implemented in

the next chapter for the ALS Sortie Generation Model.

4.3.4.1 Lower-Level Model

For the flying training model, the direct output of Models A and B were used as the input

into Model C for the Direct Method. For example, let i = 1, 2, 3 where i = 1: C-5 ACAR

TiS, i = 2: KC-135 PIQ TiS, i = 3: KC-135 IAC TiS and Ki = number of individuals in

pilot type i. Thus, in Scenario 1 there are K1 = 11 TiS generated per replication by the C-

5 ACAR pilots, K2 = 87 TiS generated per replication by the KC-135 IAC pilots, and K3

= 206 TiS generated per replication by the KC-135 PIQ pilots; all these TiS are directly

fed into Model C. Model C receives input from each lower-level model for every

replication. To illustrate, let Y1,2,K1,1 be the 11 TiS generated for the C-5 ACAR type,

replication 2, scenario 1, then the input into Model C is

[]
11,2, ,1 4.3222 4.3222 5.9429 5.9429 8.2608 8.2608 6.5473 6.5473 4.5305 4.5305 7.2744KY =

A snap shot of the portion of Base A DM input into Model C is provided in Figure 38.

1

1

1

1,1, ,2

1,2, ,2

1,117, ,2

 1 2 ... 11

Y : 1 4.3012 4.3012 ... 5.2902
Y : 2 9.5750 9.5750 ... 7.2496

...
4.9607 4.9607 ... 7.2909Y :117

K

K

K

⎡
⎢

⎣

⎤
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

1

1

1

1,1, ,1

1,2, ,1

1,117, ,1

 1 2 ... 11

Y : 1 5.2959 5.2959 ... 8.2492
Y : 2 4.3222 4.3222 ... 7.2744

...
6.2894 6.2894 ... 5.3057Y :117

K

K

K

⎡
⎢
⎢

⎣

⎤
⎥
⎥

⎢ ⎥
⎢ ⎥⎦

1

1

1

1,1, ,32

1,2, ,32

1,117, ,32

 1 2 ... 11

Y : 1 4.3012 4.3012 ... 6.3450
Y : 2 9.3309 9.3309 ... 4.2831

...
4.9607 4.9607 ... 6.282Y :117

K

K

K 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

2

32

… …

C-5 ACAR Pilot TiSScen #

2

2

2

2,1, ,2

2,2, ,2

2,117, ,2

 1 2 ... 206

Y : 1 11.6527 11.6527 ... 12.6851
Y : 2 10.6904 10.6904 ... 15.7584

...
10.3147 10.3147Y :117

K

K

K ... 14.0711

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2

2

2

2,1, ,1

2,2, ,1

2,117, ,1

 1 2 ... 206

Y : 1 10.6302 10.6302 ... 12.7762
Y : 2 10.3794 10.3794 ... 11.2034

...
10.2754 10.27Y :117

K

K

K 54 ... 15.0212

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2

2

2

2,1, ,32

2,2, ,32

2,117, ,32

 1 2 ... 206

Y : 1 12.6798 12.6798 ... 17.2192
Y : 2 10.4365 10.4365 ... 15.3197

...
11.6972 11.6972 ..Y :117

K

K

K . 18.9784

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

KC-135 PIQ Pilot TiS

3

3

3

3,1, ,2

3,2, ,2

3,117, ,2

 1 2 ... 87

Y : 1 9.3634 9.4137 ... 9.4793
Y : 2 10.3691 10.3691 ... 10.2397

...
9.3854 9.3854 ... 10.2019Y :117

K

K

K

⎡
⎢

⎣

⎤
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

3

3

3

3,1, ,1

3,2, ,1

3,117, ,1

 1 2 ... 87

Y : 1 7.3998 7.3998 ... 8.1297
Y : 2 7.2942 7.2942 ... 7.6872

...
7.3504 7.3861 ... 10.5731Y :117

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢
⎢⎣ ⎦

⎥
⎥

3

3

3

3,1, ,32

3,2, ,32

3,117, ,32

 1 2 ... 87

Y : 1 9.3373 9.3373 ... 11.0076
Y : 2 9.3016 9.3016 ... 13.5219

...
9.3854 9.3854 ... 13.Y :117

K

K

K 3676

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

KC-135 IAC Pilot TiS

Figure 38 - Base A Simulation Output

 112

For methods 1 to 5, all the Direct Method simulation output of the lower-level model is

used to estimate the inputs into the next higher level (Model C). For Methods 1 and 2,

the following equation was used to estimate the means of the DM outputs for both lower-

level models, Bases A and B

=1 1

1 1= ,
iKJ

il ijkl
j ki

Y Y i l
J K =

⎛ ⎞
∀⎜ ⎟

⎝ ⎠
∑ ∑ (4.2)

where i: output type, i = 1,...,I, I = 3

 j: replication number, j = 1,...,J, J = 117

 k: observation number, k = 1,...,Ki, Ki = number of individuals in output type i

 l: scenario number, l = 1,...,L, L = 32.

Figure 39 illustrates Method 1 as applied to the C-5 ACAR pilot time in system output

for Base A across the thirty-two scenarios.

5.9329
7.2335
...
6.2643

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1

2

32

… …

C-5 ACAR Pilot TiSScenario #

6.3358
6.0437
...
7.1530

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Avg per rep

6.1236
6.7604
...
6.2726

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Avg across reps/Input

6.1556

6.2383

… …

6.0188

=1 1

1 1= ,
iKJ

il ijkl
j ki

Y Y i l
J K =

⎛ ⎞
∀⎜ ⎟

⎝ ⎠
∑ ∑

1

1

1

1,1, ,2

1,2, ,2

1,117, ,2

 1 2 ... 11

Y : 1 4.3012 4.3012 ... 5.2902
Y : 2 9.5750 9.5750 ... 7.2496

...
4.9607 4.9607 ... 7.2909Y :117

K

K

K

⎡
⎢

⎣

⎤
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

1

1

1

1,1, ,1

1,2, ,1

1,117, ,1

 1 2 ... 11

Y : 1 5.2959 5.2959 ... 8.2492
Y : 2 4.3222 4.3222 ... 7.2744

...
6.2894 6.2894 ... 5.3057Y :117

K

K

K

⎡
⎢
⎢

⎣

⎤
⎥
⎥

⎢ ⎥
⎢ ⎥⎦

1

1

1

1,1, ,32

1,2, ,32

1,117, ,32

 1 2 ... 11

Y : 1 4.3012 4.3012 ... 6.3450
Y : 2 9.3309 9.3309 ... 4.2831

...
4.9607 4.9607 ... 6.282Y :117

K

K

K 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 39 - FTM Base A C-5 ACAR M1 Aggregation Input

 113

In addition to the means calculated for Method 1, Method 2 calculates the required

standard deviation for input into the Normal distribution. Figure 40 illustrates Method 2

as applied to the C-5 ACAR pilot time in system output for Base A across the thirty-two

scenarios.

5.9329
7.2335
...
6.2643

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1

2

32

… …

C-5 ACAR Pilot TiSScenario #

6.3358
6.0437
...
7.1530

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Avg per rep

6.1236
6.7604
...
6.2726

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Avg across reps

6.1556

6.2383

… …

6.0188

Stdev across reps

0.0461

0.0462

0.0486

Input

Normal (6.1556,0.0461)

Normal (6.2383,0.0462)

Normal (6.0188,0.0486)

1

1

1

1,1, ,2

1,2, ,2

1,117, ,2

 1 2 ... 11

Y : 1 4.3012 4.3012 ... 5.2902
Y : 2 9.5750 9.5750 ... 7.2496

...
4.9607 4.9607 ... 7.2909Y :117

K

K

K

⎡
⎢

⎣

⎤
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

1

1

1

1,1, ,1

1,2, ,1

1,117, ,1

 1 2 ... 11

Y : 1 5.2959 5.2959 ... 8.2492
Y : 2 4.3222 4.3222 ... 7.2744

...
6.2894 6.2894 ... 5.3057Y :117

K

K

K

⎡
⎢
⎢

⎣

⎤
⎥
⎥

⎢ ⎥
⎢ ⎥⎦

1

1

1

1,1, ,32

1,2, ,32

1,117, ,32

 1 2 ... 11

Y : 1 4.3012 4.3012 ... 6.3450
Y : 2 9.3309 9.3309 ... 4.2831

...
4.9607 4.9607 ... 6.282Y :117

K

K

K 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 40 - FTM Base A C-5 ACAR M2 Aggregation Input

A portion of the lower-level output aggregation as input into the higher-level model for

both Methods 1 and 2 are presented in Table 32. M3 and M4 HL input data are generated

in a similar fashion as Methods 1 and 2; therefore the generation portion is not

demonstrated here. However, a snap-shot of the higher-level model input for Methods 3

and 4 are presented in Table 33. Recall that the only difference between Methods 1 and 2

versus Methods 3 and 4 are the ways in which the means and standard deviations are

calculated, under the assumption that a control variate technique is implemented in the

simulation model. Recall from Table 20 the lower-level model output designators which

are used for variable headings in Tables 32 and 33. The standard error is designated as

se.

 114

Table 32 - FTM M1 and M2 Input Data

Scenario YA1_mean YA1 _se YA2_mean YA2_se YA3_mean YA3_se YB1_mean YB1 _se YB2_mean YB2_se YB3_mean YB3_se

1 6.1557 0.0462 12.6808 0.0316 6.4191 0.0266 23.4135 0.2508 12.1284 0.3654 8.7201 0.0232

2 6.2384 0.0462 14.0754 0.0632 7.7006 0.0537 23.4137 0.2507 11.5657 0.3356 8.8590 0.0267

… … … … … … … … … … … … …

32 6.0188 0.0487 14.6932 0.0830 8.0567 0.0885 25.9578 0.2707 33.4865 1.0396 9.2856 0.0280

Table 33 - FTM M3 and M4 Input Data
Scenario YA1_mean YA1 _se YA2_mean YA2_se YA3_mean YA3_se YB1_mean YB1 _se YB2_mean YB2_se YB3_mean YB3_se

1 6.1688 0.0319 12.9598 0.0946 6.6167 0.0516 25.9414 1.1908 12.0367 0.3582 9.1777 0.1605

2 5.7931 0.1040 13.7454 0.0921 7.4438 0.1014 27.1828 1.0416 11.6694 0.3129 9.2129 0.1730

… … … … … … … … … … … … …

32 6.0263 0.0379 14.1405 0.1654 7.9448 0.2385 20.7128 1.3731 23.0700 4.2829 9.6827 0.1386

Tables 34 and 35 depict a portion of Methods 5 and 6 representations of the lower-level

models output as input into Model C.

Table 34 - FTM M5 Input Data
Scenario YA1 YA2 YA3 YB1 YB2 YB3

1 (4+11*BETA(1.25,5.11)) (9+21*BETA(1.25,5.11)) (4+8.94*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+80*BETA(1.25,5.11)) (6+19*BETA(1.25,5.11))

2 (4+9*BETA(1.25,5.11)) (9+25*BETA(1.25,5.11)) (4+16*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+73*BETA(1.25,5.11)) (6+65*BETA(1.25,5.11))

… … … … … … …

32 (4+8*BETA(1.25,5.11)) (9+25*BETA(1.25,5.11)) (4+27*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+182*BETA(1.25,5.11)) (6+24*BETA(1.25,5.11))

Table 35 - FTM M6 Input Data
Scenario YA1 YA2 YA3 YB1 YB2 YB3

1 6.1682 12.6273 6.3018 23.2866 10.1925 8.7431

2 6.2773 14.1993 7.6807 23.2866 10.1925 8.8799

… … … … … … …

32 6.0750 14.4875 7.7242 26.3327 32.1215 9.3086

Next we investigate the model aggregation representation of M7 (ANN) as input

into Model C and discuss the process on how we obtained the final model chosen as the

input into Model C. Three predictive ANN models (FANN, RBF, and GRNN) were

investigated and evaluated for the effects of the different parameters (as it pertains to a

specific type of ANN) on model performance. For model performance we used the

average RMSE for the three lower-level outputs to determine the “best” model. In

addition to the RMSE criteria, ANN model run time was also considered, when

 115

applicable. One major advantage of using an ANN as a metamodeling technique is its

predictive capability even in the absence of data; that is, as long as the new inputs are

within the range of the original training data, the ANN are able to produce predictions

that can be used as the input into the next level of the hierarchy. Also, unlike traditional

models like regression, ANNs are able to produce more than one output simultaneously.

We used the hold-out method for the training/testing data split. Recall from Table 31 that

a total of 2,560 training exemplars and 1,184 testing exemplars were used for each lower

level model. Each exemplar consisted of eight elements (X1, X2, X3, X4, X5, Y1, Y2, Y3)

specific to the lower-level Models A and B, where the first five elements were used as the

input variables and the last three elements were the output variables.

 For the feed-forward ANN, we trained the network on a single hidden layer

[Hornik et al., 1989] and used a linear transfer function (purelin in Matlab) at the output

layer. The number of nodes in the hidden layer (neurodes) was varied from two to

twenty, based on the heuristic suggested in Looney [1997:91-92]. Two different transfer

functions: log-sigmoid (logsig in Matlab) and the hyperbolic tangent sigmoid (tansig in

Matlab) were also allowed to vary. Since the newff function in Matlab produces different

predictions every time the routine is run without establishing any initial weights and/or

biases (due to the different starting point in the re-initialization of the weights and

biases), the average of 30 feed-forward runs were used to determine which structure (for

the different combination of transfer function and neurodes) had the lowest RMSE. The

data pre-processing performed on the input feature data was normalization between 0 and

1 [Looney, 1997:88]. The training parameters used were: mean squared error goal =

0.0001 and the number of iterations for training = 5000 epochs. Overall, 38 sets of

FANN models were evaluated at each lower level model. The corresponding figures for

the number of neurodes versus RMSE FANN analysis are displayed in Figures 41 and 42

for Bases A and B, respectively.

 116

2 4 6 8 10 12 14 16 18 20
0.516

0.518

0.52

0.522

0.524

0.526

0.528

0.53

0.532

0.534

Number of nodes in hidden layer

R
M

S
E

Feedforward NN Base A

tansig
logsig

Figure 41 - Base A FANN RMSE

2 4 6 8 10 12 14 16 18 20
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

Number of nodes in hidden layer

R
M

S
E

Feedforward NN Base B

tansig
logsig

Figure 42 - Base B FANN RMSE

 For the radial basis function (RBF) neural network the Matlab function newrb was

used and the parameters that were allowed to vary were: the spread (σ = .5:0.1:1.7) and

the neurodes (MN = 5:50) [Shin and Goel, 2000] for a total of 598 RBF models evaluated

at each lower level model. Figures 43 and 44 depict the results on the testing data for the

RBF for Models A and B, respectively.

Figure 43 - Base A RBF RMSE

Figure 44 - Base B RBF RMSE

In the general regression neural network (GRNN) the Matlab function newgrnn

was used with the same spread variation as the RBF; a total of 13 GRNN models were

evaluated at each lower-level models. The form of feature data pre-processing for both

RBF and GRNN was standardization where each feature column’s mean is transformed

to zero with a standard deviation of one. The corresponding figures for the spread versus

RMSE GRNN analysis are displayed in Figures 45 and 46 for Bases A and B,

respectively.

 117

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.5

0.52

0.54

0.56

0.58

0.6

0.62

Spread values

R
M

S
E

Generalized Regression NN Base A

Trng
Test

Figure 45 - Base A GRNN RMSE

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Spread values

R
M

S
E

Generalized Regression NN Base B

Trng
Test

Figure 46 - Base B GRNN RMSE

Table 36 summarizes the best structure and the parameters used for each ANN for the

lower-level analysis of the FTM. In Table 36, a 5-11-3 structure for the feed-forward NN

indicates 5 inputs, 1 hidden layer with 11 nodes and 3 outputs. A Logsig- Purelin transfer

function indicates a Logsig transfer function in the hidden layer and the Purelin

corresponds to the transfer function in the outputs. Note that the GRNN and the FANN

generated the smallest RMSE, but the run time of the GRNN was significantly shorter

than that of the FANN, thus GRNN was used as the ANN metamodel for Method 7.

Table 37 depicts a portion of the M7 lower-level model aggregation input into Model C.

Table 36 - Method 7 FTM ANN Attributes

ANN Parameters (Base A/B)
Base A

Test RMSE

Base B

Test RMSE

FANN

node structure: 5-11-3/5-15-3

transfer functions: Logsig/Logsig

run time in secs: ~150K/~155K

0.5165 3.5425

RBF

σ : 1.6/1.7

MN: 43/43

run time: 12331.8/12689.3

0.5828 4.3001

GRNN
σ : 0.5/0.5

run time in secs: 122.5/126.2
0.5165 3.5425

 118

Table 37 - FTM M7 (ANN-GRNN) Input Data
Scenario YA1 YA2 YA3 YB1 YB2 YB3

1 6.1521 12.684 6.4466 23.212 12.332 8.7172

2 6.2768 14.089 7.6894 23.213 11.577 8.8374

… … … … … … …

32 6.156 14.488 7.8927 26.259 33.259 9.2633

4.3.4.2 Higher-Level Model

The Direct Method approach along with the seven alternate methods described was

implemented as part of the input for Base C Model. At the higher-level for the FTM, the

outputs of interest are total pilot grads (Z1: TPG), Z2: TiS, and mission capability rate (Z3:

MCR). After running Models A and B and feeding their output, using the DM and the

different alternate methods, as an input into Model C, we need to determine if any of the

alternate methods are significantly different from the Direct Method approach. For this

comparative analysis we initially utilize the paired-t confidence interval approach as

described in Law [2006:552-561] to form the approximate 100(1-α) percent simultaneous

confidence interval (Bonferroni inequality) where we set the DM approach as the

standard to compare all other methods to. We examined the across-scenario comparison

for the output of Model C. The initial analysis is to examine how the various aggregation

techniques can handle reproducing the simulation model means at the replication level

and therefore validate the techniques’ ability to perform general prediction of the

simulation model.

For the across-scenario analysis, we examined the replication-by-replication

results of Scenarios 1-32. The partial TPG (Z1), TiS (Z2), and MCR (Z3) results for the

FTM are shown in Tables 38 to 40 along with the sample means and variances for each

method, where j is the replication number.

Table 38 - FTM TPG (Z1)

j DMj M1j M2j M3j M4j M5j M6j M7j
1 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00
2 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00
...

3744 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00
Mean 499.90 499.94 499.87 499.96 499.83 499.90 499.94 499.87

Variance 0.3304 0.0610 0.5168 0.0557 0.7021 0.6228 0.0610 0.5160

 119

Table 39 - FTM TiS (Z2)

j DMj M1j M2j M3j M4j M5j M6j M7j
1 6.2888 6.3773 6.252 6.3773 6.252 6.1618 6.3773 6.4172
2 6.1568 6.3203 6.3733 6.3203 6.3733 6.1448 6.3203 6.3733
...

3744 6.4213 6.3488 6.4455 6.3488 6.4455 6.8584 6.3488 6.4455
Mean 6.2669 6.2567 6.2609 6.2752 6.2821 6.2558 6.2567 6.2633

Variance 0.0152 0.0145 0.0196 0.0137 0.0193 0.0261 0.0145 0.0201

Table 40 - FTM MCR (Z3)

j DMj M1j M2j M3j M4j M5j M6j M7j
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
...

3744 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Variance 2.63E-08 5.96E-09 3.93E-08 7.03E-09 5.41E-08 4.08E-08 5.95E-09 3.93E-08

Since we have seven intervals (g = 7) to construct, we made each interval at level 98.57%

(1-α/g) to yield an overall confidence level of at least 90%, where α = 0.1. From this, we

can deduce (with a confidence level of at least 1-α) that method g differs from our

standard Direct Method approach if the interval μg-μDM misses zero, and that method g is

not significantly different from our DM approach if the confidence interval contains zero.

Tables 41 to 43 show the 98.57% individual confidence intervals for μg-μDM, for g =

1,..,7 (the seven different alternate methods) for the different Base C Model outputs using

the paired-t approach to confidence interval formation. The interval(s) with a single

asterisk signify those that are not significantly different from the DM approach,

indicating a good candidate method for aggregation. In addition, only intervals with an

asterisk have an accompanying difference in the sample means, M DM−g (e.g., in

Table 41, M DM−g is only included for Methods 2, 5, and 7) to evaluate which

alternative aggregation method is more precise; the smallest absolute difference in the

sample means is indicated with a double asterisk.

 120

Table 41 - Base C TPG (Z1) 98.57% Confidence Interval
Comparisons with the Standard

g Method M DM−g Half-length Interval

1 Mean n/a n/a (0.0190, 0.0670)
2 Normal(Mean,se) 0.0340 0.0566 (-0.0905, 0.0227)*
3 MeanCV n/a n/a (0.0304, 0.0770)
4 Normal(MeanCV,seCV) n/a n/a (-0.1253, -0.0237)
5 Dist Fitting 0.0008** 0.0357 (-0.0365, 0.0349)*
6 Regression n/a n/a (0.0190, 0.0670)
7 ANN 0.0329 0.0570 (-0.0898, 0.0241)*

Table 42 - Base C TiS (Z2) 98.57% Confidence Interval
Comparisons with the Standard

g Method M DM−g Half-length Interval

1 Mean 0.0102 0.0184 (-0.0286, 0.0082)*
2 Normal(Mean,se) 0.0060 0.0260 (-0.0319, 0.0200)*
3 MeanCV 0.0083 0.0155 (-0.0072, 0.0238)*
4 Normal(MeanCV,seCV) 0.0152 0.0201 (-0.0049, 0.0354)*
5 Dist Fitting n/a n/a (-0.0153, -0.0069)
6 Regression 0.0102 0.0184 (-0.0286, 0.0082)*
7 ANN 0.0035** 0.0249 (-0.0285, 0.0214)*

Table 43 - Base C MCR (Z3) 98.57% Confidence Interval
Comparisons with the Standard

g Method M DM−g Half-length Interval

1 Mean n/a n/a (5.4E-06, 1.9E-05)
2 Normal(Mean,se) 7.7E-06 1.6E-05 (-2.3E-05, 8.0E-06)*
3 MeanCV n/a n/a (6.9E-06, 2.0E-05)
4 Normal(MeanCV,seCV) n/a n/a (-3.3E-05, -4.5E-06)
5 Dist Fitting 4.8E-07** 9.8E-06 (-9.4E-06, 1.0E-05)*
6 Regression n/a n/a (5.4E-06, 1.9E-05)
7 ANN 7.4E-06 1.6E-05 (-2.3E-05, 8.4E-06)*

 The outputs in Tables 41 to 43 indicate which method is most appropriate, when

comparing the means, as an aggregation method employed at the lower-level for specific

higher-level outputs. Note that the methods without the single asterisk (*) signify that the

output of the means at the higher-level will be statistically different from the DM if these

methods are implemented as the input for the higher-level model. As can be seen from

the confidence interval means comparison for the different outputs for Base C Model,

Methods 2, 5, and 7 are good candidates as input into the higher level model for the TPG

and MCR outputs, which indicates that these methods implemented at the lower levels

 121

produced statistically similar outputs for the mean in the next higher-level. For the TiS

output, all but Method 5 are good candidates for the lower-level aggregation. In order to

accommodate all three higher-level outputs, assuming no output prioritization is

employed, we see that Methods 2 and 7 are common aggregation methods thus a better

acceptable method for means comparison for this specific simulation.

 In addition to capturing the means of the simulation for the DM, perhaps

capturing the distribution of the output at the higher-level for the DM might give us

another process of portraying the true nature of the simulation model. To demonstrate

the graphical comparison method of the different higher-level outputs, we examine the

graphical comparisons of the DM versus selected alternate aggregation methods for the

TiS (Z2) output. Statistically, all but M5 are good candidate aggregation methods for the

lower-level models. However, we need to further examine the candidate methods in

terms of their output distributions at the higher-level. The graphical comparison looks at

one scenario at a time (Scenario 3) for the candidate aggregation method with the lowest

mean absolute difference (M7) to that with the largest mean absolute difference (M4) in

the means comparison for the TiS output (see Table 42). The tool used for this graphical

analysis is ExpertFit®. Figure 47 depicts the histogram comparison of the selected

methods while Figure 48 depicts the absolute error plot of the histogram comparison.

The blue bars in Figure 47 are the histogram of the outputs at the higher-level with the

Direct Method (no aggregation in the lower-level outputs). The red and the green bars

depict the histograms of M4 and M7, respectively. It is sometimes difficult to assess the

differences or similarities in the histograms, thus the histogram in Figure 47 is

accompanied by its corresponding absolute-error plot as shown in Figure 48. The

differences are more apparent when utilizing the absolute-error plot to compare

histograms. Note that the absolute-error between DM versus M7 is larger than that of

DM versus M4 indicating that M4 is more similar to the DM in their distributions.

 122

DM_FTM_HL M4_FTM_HL M7_FTM_HL

0.00

0.05

0.10

0.15

0.20

Frequency-Comparison Plot

Interval Midpoint

Pr
op

or
tio

n

5.92 6.03 6.15 6.26 6.38 6.49 6.60

Figure 47 - FTM Z2 Histogram Comparison

M4_FTM_HL M7_FTM_HL

0.00

0.05

0.10

0.15

0.20

Absolute-Error Plot

Interval Midpoint

Ab
so

lu
te

 E
rr

or
 (P

ro
po

rti
on

)

5.92 6.03 6.15 6.26 6.38 6.49 6.60

Figure 48 - FTM Z2 Absolute-Error Histogram

 123

 Next we examine the distribution function comparisons which are shown in

Figures 49 and 50. Similar to the histogram comparison, direct visual comparison of the

methods using the cdf could be challenging therefore we look at the distribution-function-

differences plot in Figure 50 to compare the distribution functions in Figure 49. From

Figure 50, we can visually assess that M4 is more similar to DM than M7. The

ExpertFit® graphical output also depicts the mean difference from the compared method

(DM), which shows that M4 has a lower mean difference than M7, as compared to the

DM.

DM_FTM_HL M4_FTM_HL M7_FTM_HL

5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Distribution Function Plot

X-Value

F(
x)

 (P
ro

po
rti

on
)

Figure 49 - FTM Z2 CDF Comparison

 124

M4_FTM_HL (mean diff. = 0.03122) M7_FTM_HL (mean diff. = 0.09442)

5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6

0.0

0.1

0.2

0.3

0.4

0.0

-0.1

-0.2

-0.3

-0.4

Distribution-Function-Differences Plot

X-Value

Di
ffe

re
nc

e
(P

ro
po

rti
on

)

Figure 50 - FTM Z2 CDF-Differences Plot

Next we look at the K-S test result in Table 44 at α = 0.10. Recall that for the K-S test,

the null hypothesis (H0) is that the compared data are drawn from the same distributions.

The p-value indicates the α-level at which the null hypothesis will not be rejected. The

K-S statistic signifies the maximum distance between the compared distribution

functions. Based on Table 44, we can conclude that M4 implemented at the lower-level

output generates outputs at the higher-level model that comes from the same distribution

as the DM.

Table 44 - FTM Z2 K-S Test

DM vs. Fail to Reject/Reject H0? p-value K-S stat

M4 Fail to Reject 0.27240 0.1282

M7 Reject 0.00002 0.3077

 125

4.4 Summary

For the Flying Training Model, we performed a logical aggregation at the lower-level

models and determined that depending on which higher-level model output is deemed

more important, dictated the type of aggregation that is best implemented at the lower-

level. Without any sort of prioritization on the importance of the higher-level output, we

determined that in general, Methods 2 and 7 are good representations of the aggregation

methods at the lower-level that are common for all three outputs of interest. We also

investigated in more detail the TiS output, for a specific scenario, and used some

graphical comparison methods to compare the higher-level model outputs of the Direct

Method as compared to the applicable aggregation methods with the smallest mean

absolute difference (M7) and the largest mean absolute difference (M4). For this

additional analysis, we observed that the initial confidence interval method comparison

does not agree with the graphical and K-S test analysis. Based on the analysis, M7 is a

good lower-level aggregation method when seeking similar means in the higher-level

output while M4 used as an aggregation method at the lower-level produced outputs at

the higher-level that not only resembles the means, but also mimics the distribution of the

Direct Method outputs.

 Keep in mind that M4 aggregation predictions are specific to the data in a given

scenario while the M7 aggregation predictions are derived according to all the scenarios.

In other words, the ANN method is trying to conform its predictions to all the available

data in consideration, looking at all scenarios. In contrast, M4 predictions are based on

the data for some specific scenario. In addition, depending on the use of the higher-level

simulation model or the needs of the users can drive which aggregation technique is

better suited at the lower-level aggregations. As demonstrated for the FTM, depending

on the type of aggregation technique performed in the lower-levels produced higher-level

outputs that are similar in the means and/or distribution with that of the Direct Method

simulation. Therefore, depending on the goal of the simulation will dictate which type of

aggregation method is preferred.

 126

V. Application II: ALS Sortie Generation Model (ASGM), Results and Analysis

5.1 Overview

For the second real world application of our aggregation methodologies we examine the

Autonomic Logistics Systems (ALS) sortie generation model (SGM) built for a thesis

effort by Paul Faas [Faas, 2003]. The format of the discussion in this chapter is very

similar to the FTM and some of the verbiages are even repeated in order to make this

chapter stand-alone; thus preventing the reader from constantly referring back to the

previous FTM chapter. The ASGM was developed to closely represent the current Air

Force aircraft sortie generation process as depicted in Figure 51.

Aircraft
Landing

Parking &
Recovery

Aircrew
Debrief

Unscheduled
Maintenance

Preventative
Maintenance

Aircraft
Scheduling

Mission
Preparation

Prelaunch
Inspection

Aircraft
Launch

PostLaunch
Clean-up

Aircraft
Servicing

Flight Line
Maintenance

Process

Where
ALS

has the
most impact

Aircraft
Landing

Parking &
Recovery

Aircrew
Debrief

Unscheduled
Maintenance

Preventative
Maintenance

Aircraft
Scheduling

Mission
Preparation

Prelaunch
Inspection

Aircraft
Launch

PostLaunch
Clean-up

Aircraft
Servicing

Aircraft
Landing
Aircraft
Landing

Parking &
Recovery
Parking &
Recovery

Aircrew
Debrief
Aircrew
Debrief

Unscheduled
Maintenance
Unscheduled
Maintenance

Preventative
Maintenance
Preventative
Maintenance

Aircraft
Scheduling

Aircraft
Scheduling

Mission
Preparation

Mission
Preparation

Prelaunch
Inspection
Prelaunch
Inspection

Aircraft
Launch
Aircraft
Launch

PostLaunch
Clean-up

PostLaunch
Clean-up

Aircraft
Servicing
Aircraft
Servicing

Flight Line
Maintenance

Process

Where
ALS

has the
most impact

Figure 51 - Sortie Generation Process [Faas, 2003:5, Fig 1]

Although the model has the capability of switching between the prognostics and

health management (PHM) being on or off, which is the difference between having an

ALS system or baseline (no ALS) system, our motivation is not to compare between

 127

systems. Rather, our task is to determine what part of the model (structural aggregation)

can be aggregated and later determine in the analysis which aggregation methodology is

best suited for this specific model. Therefore, we will determine which part of the model

can be structurally aggregated using the version of the model in which the ALS system is

activated and then apply the different aggregation methodologies to the ALS sortie

generation model. The basic process with the PHM turned on is illustrated in Figure 52.

Create AC
Schedule/

Mission Prep

Pre-Flt
Abort?

Taxi/Takeoff Fly Landing

Recover

DebriefService
PHM

Detected?
Scheduled

Mx?

Unscheduled
Mx

Scheduled
Mx

Yes

Yes

Yes

No No

No

Create ACCreate AC
Schedule/

Mission Prep

Pre-Flt
Abort?
Pre-Flt
Abort?

Taxi/TakeoffTaxi/Takeoff FlyFly LandingLanding

RecoverRecover

DebriefDebriefServiceService
PHM

Detected?
PHM

Detected?
Scheduled

Mx?
Scheduled

Mx?

Unscheduled
Mx

Unscheduled
Mx

Scheduled
Mx

Scheduled
Mx

Yes

Yes

Yes

No No

No

Figure 52 - Sortie Generation Process with PHM [Miller et al., 2007:4, Fig 2]

After investigation of the interaction structure between sub-modules in the model,

the following figure, as depicted in Figure 53, has been derived and will be used for the

decomposition of the ALS sortie generation model.

Create AC
Schedule/

Mission Prep

Ground Failure
Check Fly Landing

Recover

Debrief/ServicePHM Area

Unscheduled
Mx

Scheduled
Mx

Taxi

Preflight

Takeoff

Next Day
Hold Area

Create ACCreate AC
Schedule/

Mission Prep

Ground Failure
Check FlyFly LandingLanding

RecoverRecover

Debrief/ServiceDebrief/ServicePHM AreaPHM Area

Unscheduled
Mx

Unscheduled
Mx

Scheduled
Mx

Scheduled
Mx

TaxiTaxi

PreflightPreflight

TakeoffTakeoff

Next Day
Hold Area
Next Day
Hold Area

Figure 53 - Modified Sortie Generation Process with PHM (Detailed Structure)

 128

5.2 ALS Sortie Generation Model

5.2.1 Model Assumptions

The decomposable portion of the ASG Model will be considered the submodel

representation and the entire ASG Model as the full model (or higher-level)

representation, i.e., the entire ASG Model will be reliant on the output of the portion of

the model that is aggregated as part of its input. Section 5.5.1 discusses how to identify

the portion of the ASG Model that can be aggregated when the structural decomposition

method is performed. In our application we need to be able to identify the portion of the

model that can be aggregated in order to apply our methodologies. For instance, if we

wanted to isolate the unscheduled maintenance sub-module and replace it with one of our

aggregation techniques, we first need to justify that this specified sub-module is indeed

decomposable.

5.2.2 Model Description

The ASGM was originally built in ARENA™ Version 5.0. The model simulates the

operations of the F-16 aircraft sortie generation at Hill Air Force Base with a focus on the

failure and maintenance of the four line replaceable units (LRUs) that make up the

AN/APG-68 radar [Faas and Miller, 2003]. The supply system and the manpower

resources are also modeled minimally and with several caveats [Faas and Miller,

2003:1022]. The simulation examines an Air Expeditionary Force (AEF) scenario to

ascertain the wing’s deployment effectiveness in terms of minimal last minute inspection

and parts swapping [Faas, 2003:4]. The simulation is built to run on a 5-day week, 24-

hour operation, and an extended 5-year look.

5.2.3 Simulation Input and Output Parameters

There are twenty-two different input parameters, which are a collection of variables and

attributes, which can be manipulated for this model. The twenty-two inputs are listed in

Table 45.

 129

Table 45 - ALS Sortie Generation Model Input Features [Faas, 2003:35, Table 4]
Feature/Variable Description Initial Value Units

attANTfail Time until failure of the ANT LRU 375 hours
attAPSPfail Time until failure of the APSP LRU 425 hours
attDMTfail Time until failure of the DMT LRU 550 hours
attMLPRFfail Time until failure of the MLPRF LRU 275 hours
varSupplyLevelANT Initial supply of ANT LRUs 7 N/A
varSupplyLevelAPSP Initial supply of APSP LRUs 7 N/A
varSupplyLevelDMT Initial supply of DMT LRUs 7 N/A
varSupplyLevelMLPRF Initial supply of MLPRF LRUs 7 N/A
varOrderLevelANT Order level for the ANT LRU 6 N/A
varOrderLevelAPSP Order level for the APSP LRU 6 N/A
varOrderLevelDMT Order level for the DMT LRU 6 N/A
varOrderLevelMLPRF Order level for the MLPRF LRU 6 N/A
varTakeoff1 Takeoff time for the 1st group of 4 A/C 0800 hours
varTakeoff2 Takeoff time for the 2nd group of 4 A/C 1000 hours
varTakeoff3 Takeoff time for the 3rd group of 4 A/C 1200 hours
varTakeoff4 Takeoff time for the 4th group of 4 A/C 1400 hours
varPreflightFail A/C that will fail the preflight inspection 5 percent
varFalseAlarm A/C that will experience a false alarm 3 percent
PHMLevel Level for aircraft to receive maintenance 10 hours
PHMBit Determines if PHM if on = 1 or off = 0 1 N/A
varSecondPHMLevel Level for aircraft to wait for maintenance and

return to taxi or flying
2 hours

NumTurn Number of A/C to perform a turnaround flight 2 N/A

Based on the input analysis in Faas [2003], the author and the SMEs determined

that the most critical input features as it relates to the key higher-level outputs were the

PHM Level (PHML) and the False Alarm Percentage (FAP). Let these two input factors

be the submodel representation and denoted by X1, and X2, respectively. To examine the

space of these two features a 32 = 9 (i.e., low, high, and a center point) full factorial

design of experiments were deemed adequate, which is depicted in Table 46. For the

FAP feature, the space covers the worst case, lowest setting (with an operating ALS,

there would always be a false alarm), and a center point. The PHML feature is the time

in hours prior to the failure of the line replaceable units (LRUs). The lowest setting for

the PHML represents that the system was predicting failure to a more accurate level,

while the highest hour level setting represents that the system was not as accurate in

predicting when the failure would occur.

 130

Table 46 - ASGM LL Key Input Features [Faas, 2003:70, Table 6]
Feature/Variable Low Center High Feature Designator
False Alarm (%) 1 3 5 X1
PHM Level (hours) 5 10 15 X2

Faas [2003] lists 17 output performance measures that were important to the ALS

Sortie Generation Model simulation. However, a scoped down version which includes

only the key measures of effectiveness (key outputs) that is most representative of an

aircraft equipped with an ALS was derived and are listed in Table 47: Mission Capable

Rate (MCR), Not-mission Capable for Maintenance (NMCM), Not-mission Capable for

Supply (NMCS), and the Flying Scheduling Effectiveness Rate (FSER). Let these four

output measures for the higher level representation be denoted by Z1, Z2, Z3, and Z4.

Table 47 - ASGM HL Key Output Performance Measures

HL Output Short Name Output
Designator

Mission Capable Rate MCR Z1
Not-mission Capable for Maintenance NMCM Z2
Not-mission Capable for Supply NMCS Z3
Flying Scheduling Effectiveness Rate FSER Z4

The intermediate output/input data will be determined based on the result of the

structural decomposition discussed in Section 5.3.1.

5.3 Results and Analysis

5.3.1 Mathematical Representation of the ALS Sortie Generation (ASG) Model

The decomposition examined for the ALS sortie generation model is that of the structural

decomposition where the aggregation for within-a-model is accomplished (i.e., the

identified decomposable portion of the ASGM is considered as the submodel and is

aggregated). For this within-a-model aggregation example the entire significant

input/output of the decomposable portion of the model is aggregated as a whole for a

more detailed look at the model.

 131

To illustrate the mathematical framework of the ASGM, we will demonstrate and

define the network structure of Figure 53. Consider in Figure 54 the directed network

graph of the ASG model.

N1

N3

N2

N4 N6N5 N7 N8

N9

e1 = 1

e2 = 1

e3 = 1

e10 = 1e11 = 1

e12 = 1

e4 = 1

e5 = 1 e6 = 1

e9 = 1

e7 = 1

e8 = 1

N10N11N12

N13

N14

e13 = 1

e14 = 1

e15 = 1
e16 = 1

e17 = 2

e18 = 1

e19 = 1

e20 = 1

e21 = 2

e22 = 1
N1N1

N3N3

N2N2

N4N4 N6N6N5N5 N7N7 N8N8

N9N9

e1 = 1

e2 = 1

e3 = 1

e10 = 1e11 = 1

e12 = 1

e4 = 1

e5 = 1 e6 = 1

e9 = 1

e7 = 1

e8 = 1

N10N10N11N11N12N12

N13N13

N14N14

e13 = 1

e14 = 1

e15 = 1
e16 = 1

e17 = 2

e18 = 1

e19 = 1

e20 = 1

e21 = 2

e22 = 1

Figure 54 - ASG Model Network Graph

In the graph, as depicted in Figure 54, its specific graph representation is as follows

G = {V(G), E(G), R(G)} (5.1)

 where:
 V(G) = {N1, N2, ..., N14}, is the vertex set,
 E(G) = {e1, e2, ..., e22}, is the edge set,
 R(G) = {eN1→N2, eN2→N3, ..., eN12↔N14, eN12→N2}, is the set of relations.

Thus, for the network graph in Figure 54, its specific adjacency and incidence matrices

are depicted in Figures 55 and 56 as follows, respectively

 132

ASGM

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0 0 0 0 1
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 1 0 0 0
5 0 0 0 0 0 1 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 1 0 0 0 0 0 0 0
7 0

()
8
9
10
11
12
13
14

A G =
0 0 0 0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Figure 55 - Adjacency Matrix of the ASG Model

ASGM

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2
3
4
5
6
7

 ()
8
9
10
11
12
13
14

M G =

 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Figure 56 - Incidence Matrix of the ASG Model

Now that the model structure has been visually, by means of a network graph, and

mathematically, by defining the elements of the network graph, represented we now

proceed with the model decomposition procedure for the ASG Model where we consider

 133

its network graph in Figure 54. The visual assessment of which subnetworks for the ASG

Model network graph cluster together is quite difficult with just the visualization. In

order to accomplish the determination of which subnetworks cluster together, we will

now utilize the decomposition method. First recall the edge incidence matrix M(GASGM)

for the ASG Model network graph as previously derived and is shown in Figure 56. The

weight matrix W of the edges and the pseudo-covariance matrix C are shown in Figures

57 and 58, respectively. The weight matrix W represents the communication/interaction

between the nodes for the ASG Model. A value of wi,j = 2 represents a two-way

communication between the nodes like in nodes N12-N14 (i.e., e21) and N7-N11 (i.e.,

e17).

ASGM

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0 0
4
5
6
7
8
9
10
11

 ()
12
13
14
15
16
17
18
19
20
21
22

W G =

0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Figure 57 - ASG Model Network Graph Edge Weighting Matrix

 134

ASGM

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 6 1 0 0 0 0 0 1 0 0 1 1 1
3 0 1 2 1 0 0 0 0 0 0 0 0 0 0
4 0 0 0 2 0 0 0 0 0 0 1 0 0 0
5 0 0 0 0 3 1 0 0 0 0 1 0 0 1
6 0 0 0 0 1 2 1 0 0 0 0 0 0 0
7 0 0 0 0 0 1 5 1 0 0 2 0 0 1

 ()
8 0 0
9
10
11
12
13
14

C G =
0 0 0 0 1 3 1 0 0 1 1 0

0 1 0 0 0 0 0 1 3 1 0 0 0 0
0 0 0 0 0 0 0 0 1 2 1 0 0 0
0 0 0 1 1 0 2 0 0 1 7 1 0 1
0 1 0 0 0 0 0 1 0 0 1 5 1 2
0 1 0 0 0 0 0 1 0 0 0 1 2 0
0 1 0 0 1 0 1 0 0 0 1 2 0 6

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Figure 58 - ASG Model Network Graph Pseudo-Covariance (C) Matrix

The corresponding D matrix and the calculated R matrix from the pseudo-covariance

matrix C is displayed next in Figure 59 and Figure 60, respectively.

ASGM

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.408 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.707 0 0 0 0 0 0 0 0 0

 () = D G

 0 0
0 0 0 0.707 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.577 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.707 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.447 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.577 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.577 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.707 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.378 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.447 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.707 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.408

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Figure 59 - ASG Model Network Graph D Matrix

 135

 1 0.408 0 0 0 0 0 0 0 0 0 0 0 0
0.408 1 0.289 0 0 0 0 0 0.236 0 0 0.183 0.289 0.167
 0 0.289 1 0.5 0 0 0 0 0 0 0

 0 0 0
 0 0 0.5 1 0 0 0 0 0 0 0.267 0 0 0
 0 0 0 0 1 0.408 0 0 0 0 0.218 0 0 0.236
 0 0 0 0 0.408 1 0.316 0 0 0 0 0 0 0
 0 0 0 0 0 0.316 1 0.258 0 0 0.338 0 0 0.183
 0 0 0 0 0 0 0.258 1 0.333 0 0 0.258 0.408 0
 0 0.236 0 0 0 0 0 0.333 1 0.408 0 0 0 0
 0 0 0 0 0 0 0 0 0.408 1 0.267 0 0 0
 0 0 0 0.267 0.218 0 0.338 0 0 0.267 1 0.169 0 0.154
 0 0.183 0 0 0 0 0 0.258 0 0 0.169 1 0.316 0.365
 0 0.289 0 0 0 0 0 0.408 0 0 0 0.316 1 0
 0 0.167 0 0 0.236 0 0.183 0 0 0 0.154 0.365 0 1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎠

Figure 60 - ASG Model Network Graph Pseudo-Correlation (R) Matrix

We now need to assess how many subnetworks are present in the larger ASGM

network. Table 48 depicts the results of performing the principal component analysis on

the pseudo-correlation matrix R.

Table 48 - ASG Model Network Graph Extracted Factors

Factor Eigenvalue Percent of
Variation

Cumulative Percent
of Variation

1 2.0922 14.9446 14.9446
2 1.6841 12.0291 26.9736
3 1.5827 11.3051 38.2787
4 1.4533 10.3807 48.6595
5 1.3213 9.4382 58.0976
6 1.2231 8.7366 66.8343
7 1.059 7.5644 74.3987
8 0.8893 6.3524 80.7511
9 0.7271 5.1934 85.9445

10 0.6271 4.4794 90.4239
11 0.5074 3.6241 94.0479
12 0.4628 3.306 97.354
13 0.1921 1.372 98.726
14 0.1784 1.274 100

Based on the result of the principal component analysis on the R matrix and using

Kaiser’s criterion, we retain seven factors. Next we need to find which nodes belong to

what subnetworks. After performing a principal component analysis on the C matrix, we

obtain its initial factor loading in Table 49, followed by its corresponding quartimax-,

varimax-, and equamax-rotated factor matrices in Tables 51, 51, and 52, respectively.

 136

Table 49 - ASG Model Network Graph Initial Factor Loadings - C
Node Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

1 -0.090 0.266 -0.267 0.115 -0.143 0.105 -0.027
2 -0.342 0.719 -0.501 0.181 -0.210 0.112 -0.024
3 -0.092 0.196 -0.302 0.197 -0.087 0.221 -0.049
4 -0.170 -0.143 -0.216 0.247 0.139 0.165 -0.017
5 -0.290 -0.127 0.148 0.240 -0.232 -0.405 -0.726
6 -0.139 -0.135 -0.020 -0.189 -0.391 -0.089 -0.596
7 -0.502 -0.382 -0.159 -0.525 -0.460 0.223 0.108
8 -0.229 0.108 -0.118 -0.750 0.247 -0.183 -0.122
9 -0.118 0.220 -0.403 -0.234 0.076 -0.738 0.220

10 -0.177 -0.130 -0.270 0.077 0.208 -0.530 0.247
11 -0.704 -0.535 -0.254 0.270 0.239 0.024 0.015
12 -0.559 0.377 0.323 -0.171 0.520 0.169 -0.108
13 -0.212 0.351 -0.139 -0.308 0.294 0.146 -0.300
14 -0.653 0.241 0.557 0.130 -0.293 -0.153 0.222

Table 50 - ASG Model Network Graph Quartimax Rotated Factor Matrix - C
Node Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

1 0.004 0.442 -0.002 -0.002 -0.012 -0.010 -0.010
2 -0.156 0.946 0.030 -0.183 0.016 -0.145 -0.004
3 0.059 0.455 -0.130 0.013 0.012 0.084 0.018
4 0.071 0.139 -0.418 0.025 0.032 0.043 0.033
5 -0.177 -0.037 -0.129 0.019 0.145 -0.050 -0.923
6 0.078 0.030 0.093 -0.056 -0.277 0.102 -0.695
7 -0.102 -0.001 -0.135 -0.048 -0.965 0.029 -0.097
8 0.120 -0.151 0.179 -0.676 -0.339 -0.327 -0.049
9 0.014 0.106 0.167 -0.114 -0.032 -0.909 -0.002

10 -0.025 -0.079 -0.238 0.063 0.056 -0.662 0.051
11 -0.141 -0.041 -0.931 -0.038 -0.213 -0.174 -0.108
12 -0.436 -0.014 -0.170 -0.799 0.142 0.111 0.096
13 0.095 0.211 0.022 -0.650 0.003 0.025 -0.058
14 -0.974 0.024 0.020 -0.019 -0.101 -0.018 -0.094

Table 51 - ASG Model Network Graph Varimax Rotated Factor Matrix - C
Node Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

1 0.005 0.442 -0.006 -0.005 -0.011 -0.009 -0.010
2 -0.155 0.946 0.021 -0.186 0.017 -0.143 -0.003
3 0.060 0.454 -0.134 0.010 0.014 0.085 0.018
4 0.070 0.135 -0.420 0.022 0.032 0.042 0.033
5 -0.178 -0.038 -0.127 0.019 0.138 -0.051 -0.924
6 0.078 0.031 0.093 -0.053 -0.281 0.103 -0.694
7 -0.103 0.001 -0.133 -0.038 -0.966 0.031 -0.091
8 0.116 -0.150 0.182 -0.671 -0.347 -0.328 -0.047
9 0.014 0.109 0.168 -0.112 -0.035 -0.908 -0.001

10 -0.026 -0.079 -0.236 0.064 0.055 -0.663 0.051
11 -0.145 -0.049 -0.929 -0.035 -0.217 -0.175 -0.107
12 -0.442 -0.019 -0.168 -0.798 0.135 0.108 0.095
13 0.091 0.207 0.021 -0.651 -0.003 0.024 -0.059
14 -0.974 0.027 0.024 -0.012 -0.102 -0.018 -0.092

 137

Table 52 - ASG Model Network Graph Equamax Rotated Factor Matrix - C
Node Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

1 -0.017 0.442 -0.008 -0.006 0.011 -0.005 -0.009
2 0.000 0.945 0.151 0.022 0.197 -0.136 -0.003
3 -0.147 0.449 -0.062 0.019 -0.001 0.088 0.017
4 -0.425 0.123 -0.067 0.033 -0.017 0.042 0.031
5 -0.123 -0.040 0.182 0.123 -0.020 -0.053 -0.925
6 0.094 0.035 -0.076 -0.292 0.048 0.104 -0.689
7 -0.128 0.009 0.105 -0.968 0.013 0.037 -0.076
8 0.190 -0.150 -0.104 -0.367 0.660 -0.329 -0.042
9 0.169 0.119 -0.014 -0.041 0.108 -0.907 0.001

10 -0.232 -0.080 0.028 0.051 -0.067 -0.664 0.050
11 -0.924 -0.067 0.156 -0.225 0.029 -0.178 -0.105
12 -0.161 -0.034 0.458 0.117 0.794 0.103 0.093
13 0.017 0.198 -0.081 -0.017 0.656 0.022 -0.059
14 0.034 0.036 0.974 -0.103 -0.008 -0.016 -0.088

After examining Tables 50 and 51, we observe that the structure of the quartimax-

and varimax-rotated loadings are “simple” enough for a meaningful interpretation. For

completeness, we then perform a different orthogonal rotation on the C matrix using the

equamax method. This other rotation is depicted in Table 52 and we can observe that the

equamax rotation produced a very similar clustering result as the other two rotations

except for the swapping on nodes clustering for Factors 1 and 3. Based on the varimax

rotation, we see: node 14 load on Factor 1, nodes 1, 2 and 3 load on Factor 2, nodes 4 and

11 load on Factor 3, nodes 8, 12 and 13 load on Factor 4, node 7 load on Factor 5, nodes

9 and 10 load on Factor 6, and that nodes 5 and 6 load on Factor 7.

At this point, based on the decomposition method we can now assess which

portions of the within-a-model can be aggregated. We will focus our attention at this

time on aggregating the unscheduled maintenance (node 14) portion of the model. For

this portion of the model, the output performance measures of interest are pre-flight

failure time in system (PFFTiS), supply time in system (STiS) and radar failure time in

system (RFTiS) which are listed in Table 53. Let these three outputs from the submodel

be the input factors for the higher-level representation and denoted by Y1, Y2, and Y3,

respectively.

 138

Table 53 - ASGM Submodel Key Output Performance Measures

LL Output Short
Name

Output
Designator

Pre-flight Failure Time in System PFFTiS Y1
Supply Time in System STiS Y2
Radar Failure Time in System RFTiS Y3

5.3.2 Determining the number of replications

Faas [2003:64] determined that the appropriate number of replications for the ALS Sortie

Generation Model should be 30. However, for our purposes, especially in the application

of the regression and the ANN for the aggregation methods, the number of replications

was increased from 30 to 100. This enables the application of the 5-fold cross-validation

method for use in the training and test analysis of both methods.

5.3.3 Training/Testing Data set-up

The k-fold cross-validation, with k = 5, was used [Devijver and Kittler, 1982:10] in the

evaluation of the ASGM for the regression and the ANN techniques. This method

partitions the data into two groups, k-times, and is used to train the predictor and the other

remaining set is used to test the predictor. We employed the general rule of ~80/20 data

partitioning for training and testing data for each fold, i.e., the input parameter settings

used from the computer simulation to train the ANN and the Regression are the first 80

replications per scenario and are depicted in Table 54. The last 20 replications within a

scenario were used to examine the ability of the approximating functions to generalize to

previously unseen combination samples. All the 9 different scenarios were replicated

100 times, for a total of 900 sample data points (or exemplars). Thus, for each submodel

output, 720 data points were used to train the neural network and 180 data points were

used for testing. This procedure was repeated 5-times with different training/testing sets

and the average from all the folds is what the reported values are based on. The test

prediction outputs are used to feed the higher-level model (full model) and its output is

compared to the output when the Direct Method is employed.

 139

Table 54 - ASGM 5-fold Training/Testing Data Set-up

Fold Scenario #
Training Data:
Replication #

Testing Data:
Replication #

1

1 1-80 81-100
2 1-80 81-100
...
9 1-80 81-100

Fold 1 Total 720 180
… … … …
5 1 21-100 1-20
 2 21-100 1-20

 9 21-100 1-20

Fold 5 Total 720 180
All Folds Total 3600 exemplars 900 exemplars

5.3.4 Output Comparison

Since the main focus of the different aggregation methodologies are its effects on the

hierarchical simulation, two levels need to be addressed for output comparison which are

the lower- and higher-level outputs. What follows next are the applicable comparisons at

the different levels. All eight alternate aggregation methods discussed in Chapter 3 are

implemented for the ASGM. In addition, the extension to the regression and ANN

methods where we add controls to the inputs of these methods are investigated. In

keeping with the numbering scheme of the different aggregation methods, the extension

to M6 and M7 are denoted M6.1 and M7.1, respectively. Thus, the ten aggregation

methods examined for the ASGM are:

(1) Method 1 (M1) – Mean (ilY)

(2) Method 2 (M2) – Normal (, il
sY
J

)

(3) Method 3 (M3) – Control Variate (CV) Technique Mean (l l()iYμ β)

(4) Method 4 (M4) – l l() CV 11Normal (,)
i iY Y sεμ β μ σ∼

(5) Method 5 (M5) – Distribution Fitting

(6) Method 6 (M6) – Regression

(7) Method 6.1 (M6.1) – Regression with Controls

(8) Method 7 (M7) – Artificial Neural Network (ANN)

 140

(9) Method 7.1 (M7.1) – ANN with Controls

(10) Method 8 (M8) – MetaSim

5.3.4.1 Submodel

For the ASGM, the direct output of the unscheduled maintenance block, which we will

consider at this point as the submodel, is used as the input into the higher-level (full

model) for the Direct Method. Technically, there is nothing that needs to be done for the

Direct Method at this point except for capturing the outputs of the full model with none

of the decomposable portions aggregated. However, in order to apply the different

aggregation techniques we need to ensure we identify the outputs of interest of the

submodel for later aggregation. For the ASGM, let ijklY represent a row input where i:

output type, i = 1,...,I, I = 3, j: replication number, j = 1,...,J, J = 100, k: k = 1,...,Ki, Ki =

number of entities in output type I, and l: scenario number, l = 1,...,L, L = 9. Let i = 1, 2,

3 where i = 1: PFFTiS, i = 2: STiS, i = 3: RFTiS and Ki = number of entities collected of

type i. For example, in Scenario 1, replication 1 there are 945 K1, 980 K2 and 980 K3 TiS

generated; all of these TiS are used during the simulation run. To demonstrate, let

Y1,100,K1,1 be the 914 PFFTiS generated for replication 100, scenario 1, then a piece of its

first two and last generated PFFTiS input form is

[]
11,100, ,1

 1 2 ... 914
0.784 0.547 ... 0.720 .KY =

A portion of the ASGM submodel (unscheduled maintenance block) output is provided in

Figure 61.

 141

1

1

1

1

1,1, ,2

1,2, ,2

1,100, ,2

 1 2 ... K

Y : 1 0.699 0.660 ... 0.701
Y : 2 0.728 0.784 ... 0.725

...
0.784 0.547 ... 0.717Y :100

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

1

1

1

1,1, ,1

1,2, ,1

1,100, ,1

 1 2 ... K

Y : 1 0.632 0.691 ... 0.581
Y : 2 0.641 0.648 ... 0.682

...
0.784 0.547 ... 0.720Y :100

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

1

1

1

1,1, ,9

1,2, ,9

1,100, ,9

 1 2 ... K

Y : 1 0.670 0.624 ... 0.551
Y : 2 0.643 0.700 ... 0.770

...
0.784 0.652 ... 0.612Y :100

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

2

9

… …

PFFTiSScen #

2

2

2

2

2,1, ,2

2,2, ,2

2,100, ,2

 1 2 ... K

Y : 1 0.183 0.176 ... 0.155
Y : 2 0.110 0.184 ... 0.143

...
0.166 0.106 ... 0.150Y :100

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2

2

2

2

2,1, ,1

2,2, ,1

2,100, ,1

 1 2 ... K

Y : 1 0.183 0.172 ... 0.169
Y : 2 0.110 0.200 ... 0.187

...
0.166 0.106 ... 0.166Y :100

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2

2

2

2

2,1, ,9

2,2, ,9

2,100, ,9

 1 2 ... K

Y : 1 0.183 0.159 ... 0.189
Y : 2 0.110 0.184 ... 0.211

...
0.166 0.106 ... 0.138Y :100

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

STiS

3

3

3

3

3,1, ,2

3,2, ,2

3,100, ,2

 1 2 ... K

Y : 1 3.152 2.926 ... 3.208
Y : 2 2.794 3.197 ... 3.080

...
3.358 3.211 ... 3.039Y :100

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

3

3

3

3

3,1, ,1

3,2, ,1

3,100, ,1

 1 2 ... K

Y : 1 3.073 3.400 ... 3.625
Y : 2 2.773 3.385 ... 3.243

...
3.358 3.211 ... 3.656Y :100

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

3

3

3

3

3,1, ,9

3,2, ,9

3,100, ,9

 1 2 ... K

Y : 1 3.094 2.980 ... 2.972
Y : 2 2.794 3.345 ... 3.390

...
3.358 3.211 ... 3.210Y :100

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

RFTiS

Figure 61 - ASGM Submodel Direct Method Output

For methods 1 to 5, all the Direct Method simulation output of the submodel is used to

estimate the inputs into the next higher level, i.e., no splitting of the data between training

and testing sets. For Methods 1 and 2, the following equation was used to estimate the

means of the DM outputs for the submodel

=1 1

1 1= ,
iKJ

il ijkl
j ki

Y Y i l
J K =

⎛ ⎞
∀⎜ ⎟

⎝ ⎠
∑ ∑ (5.2)

where i: output type, i = 1,...,I, I = 3

 j: replication number, j = 1,...,J, J = 100

 k: observation number, k = 1,...,Ki, Ki = number of individuals in output type i

 l: scenario number, l = 1,...,L, L = 9.

Figure 62 illustrates Method 1 as applied to the PFFTiS output across the nine scenarios.

 142

0.666
0.670
...
0.667

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1

2

9

…

Scenario #

0.666
0.666
...
0.665

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Avg per rep

0.667
0.669
...
0.669

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Avg across reps/Input

0.667

0.667

… …

0.667

…

PFFTiS

=1 1

1 1= ,
iKJ

il ijkl
j ki

Y Y i l
J K =

⎛ ⎞
∀⎜ ⎟

⎝ ⎠
∑ ∑

1

1

1

1

1,1, ,2

1,2, ,2

1,100, ,2

 1 2 ... K

Y : 1 0.699 0.660 ... 0.701
Y : 2 0.728 0.784 ... 0.725

...
0.784 0.547 ... 0.717Y :100

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

1

1

1

1,1, ,1

1,2, ,1

1,100, ,1

 1 2 ... K

Y : 1 0.632 0.691 ... 0.581
Y : 2 0.641 0.648 ... 0.682

...
0.784 0.547 ... 0.720Y :100

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

1

1

1

1,1, ,9

1,2, ,9

1,100, ,9

 1 2 ... K

Y : 1 0.670 0.624 ... 0.551
Y : 2 0.643 0.700 ... 0.770

...
0.784 0.652 ... 0.612Y :100

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 62 - ASGM M1 PFFTiS (Y1) Partial Aggregation Input

In addition to the means calculated for Method 1, Method 2 calculates the required

standard deviation for input into the Normal distribution. Figure 63 illustrates Method 2

as applied to the PFFTiS output across the nine scenarios.

PFFTiSScenario # Avg per rep Avg across reps Stdev across reps

0.00017

0.00019

0.00020

Input

Normal (0.667, 0.00017)

0.666
0.670
...
0.667

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1

2

9

…

0.666
0.666
...
0.665

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0.667
0.669
...
0.669

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0.667

0.667

… …

0.667

…

Normal (0.667, 0.00019)

Normal (0.667, 0.00020)

1

1

1

1

1,1, ,2

1,2, ,2

1,100, ,2

 1 2 ... K

Y : 1 0.699 0.660 ... 0.701
Y : 2 0.728 0.784 ... 0.725

...
0.784 0.547 ... 0.717Y :100

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

1

1

1

1,1, ,1

1,2, ,1

1,100, ,1

 1 2 ... K

Y : 1 0.632 0.691 ... 0.581
Y : 2 0.641 0.648 ... 0.682

...
0.784 0.547 ... 0.720Y :100

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

1

1

1

1,1, ,9

1,2, ,9

1,100, ,9

 1 2 ... K

Y : 1 0.670 0.624 ... 0.551
Y : 2 0.643 0.700 ... 0.770

...
0.784 0.652 ... 0.612Y :100

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 63 - ASGM M2 PFFTiS (Y1) Partial Aggregation Input

 143

A portion of the aggregation input into the higher-level model for both Methods 1 and 2

are presented in Table 55. M3 and M4 HL input data are generated in a similar fashion

as Methods 1 and 2; therefore the generation portion is not demonstrated here. However,

a snap-shot of the higher-level model input for Methods 3 and 4 are presented in Table

56. Recall that the only difference between Methods 1 and 2 versus Methods 3 and 4 are

the ways in which the means and standard deviations are calculated, under the

assumption that a control variate technique is implemented in the simulation model.

Recall from Table 53 the submodel output designators which are used for variable

headings in Tables 55 and 56. The standard error is designated as se.

Table 55 - ASGM M1 and M2 Input Data
Scenario Y1_mean Y1 _se Y2_mean Y2_se Y3_mean Y3_se

1 0.6666 0.0002 0.1666 0.0001 3.2448 0.0009
2 0.6668 0.0002 0.1667 0.0001 3.2444 0.0009
… … … … … … …
9 0.6670 0.0002 0.1665 0.0001 3.2453 0.0006

Table 56 - ASGM M3 and M4 Input Data
Scenario Y1_mean Y1 _se Y2_mean Y2_se Y3_mean Y3_se

1 0.6666 0.0001 0.1667 0.000002 3.2445 0.0001
2 0.6667 0.0001 0.1667 0.000002 3.2444 0.0001

… … … … … … …
9 0.6666 0.0002 0.1667 0.000001 3.2445 0.0001

Table 57 depicts a portion of Method 5 representations input into the higher-level model.

Recall that for this method, all the DM submodel output data (i.e., down to the

observation level where there are 95,443 PFFTiS observations in Scenario 1) within a

scenario are fed into Arena’s® Input Analyzer to derive a representative distribution.

Unlike M2 where we assume a normal distribution of the data at the replication level, in

M5 we let the Input Analyzer provide a theoretical distribution representation. Also note

that the standard deviation parameter for the normal distribution in Arena’s® Input

Analyzer does not divide by the square root of the total number of observations. The

third parameter entries for the distributions in Table 57 represent the random number

seed for the aggregated unscheduled maintenance node.

 144

Table 57 - ASGM M5 Input Data
Scenario Y1 Y2 Y3

1 (NORM(0.667,0.0589,14)) (0.06+0.21*BETA(4.33,4.20,14)) (2.29+2.04*BETA(7.95,9.04,14))

2 (NORM(0.667,0.0592,14)) (0.06+0.21*BETA(4.32,4.18,14)) (2.28+2.20*BETA(8.63,11.1,14))

… … … …

9 (NORM(0.667,0.0606,14)) (0.06+0.21*BETA(4.33,4.21,14)) (2.16+2.84*BETA(12.2,19.7,14))

Next in the analysis is the model aggregation representation of M6 (Regression)

along with the extension to the regression method M6.1 (Regression with Controls) and

discussion of the process on how we obtained the inputs into the higher-level model. The

form of the regression function for prediction for both methods is given by

l
test test trainX bY = (5.3)

where l testY is the regression test prediction, testX is the new (test) data input and trainb is

the least squares estimate of the β derived from the training data. The difference in the

two methods is in the form of the input matrix used for the training and testing of the

regression. For M6, The elements of X only include the two simulation input variables

(design variables) in the form

11 12

21 22
M6

1 2

1
1

 =
... ...

1

X

n n

x x
x x

x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (5.4)

while the elements of X for M6.1 also includes the 17 collected controls, in addition to

the design variables, and is in the form

 145

11 12 11 117

21 22 21 217
M6.1

1 2 1 17

 c ... c1
 c ... c1

 = .
... ...

 c ... c1 n n n n

 x x
 x x

 x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

X

#
#

#

 (5.5)

The value of n in the input matrix X for both methods is 720 and 180 for training and

testing, respectively. The controls in equation (5.5) were “standardized” using the

method discussed in Bauer and Wilson [1993] where in addition to the user-given means,

the number of occurrence and the user-given standard deviation for a specific control are

taken into consideration in the standardization of the controls. Tables 58 to 61 depict the

results of the step-wise variable selection technique on the two input matrix X for M6 and

M6.1. For these tables, a value of “1” signifies inclusion in the model, i.e., significant

factor, while a value of “0” signifies exclusion in the model. It is interesting to note the

significant controls related to the specific outputs. For instance, the significant controls

related to the Y1 (Pre-flight Failure Time in System) output are the delays due to

operational check (C15), discrepancy sign-off (C16), and the documentation of corrective

actions (C17). On the other hand for Y2 (Supply Time in System), its corresponding

significant control is the delay due to waiting for parts issue from supply (C13); while for

Y3 (Radar Failure TiS) its significant factors are the different parts removal delays (C1-

C4) and C13-C17 which are parts issue from supply, parts installation, operational check,

discrepancy sign-off, and documentation of corrective actions, respectively.

Table 58 - ASGM M6 Significant Factors
Fold Output X1 X2 Output X1 X2 Output X1 X2

1

Y1

1 0

Y2

0 0

Y3

0 0
2 0 0 0 0 0 0
3 1 0 0 0 0 0
4 1 0 0 0 0 0
5 0 0 0 0 0 0

 146

Table 59 - ASGM M6.1 Significant Factors for Y1
Fold Output X1 X2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

1

Y1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Table 60 - ASGM M6.1 Significant Factors for Y2
Fold Output X1 X2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

1

Y2

0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
5 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0

Table 61 - ASGM M6.1 Significant Factors for Y3
Fold Output X1 X2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

1

Y3

0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1
2 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1
3 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1
4 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1
5 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1

It is clear from Tables 58 to 61 that the design variables in the regression model

for the ASGM offer little to no significant contribution in the prediction of the responses.

This implies that no matter what value is assigned to the design variables, the regression

prediction will be the same. The regression prediction is mostly contained in the

intercept term β0, which is theoretically identical to taking the mean of the presented data

for generating a prediction. It should not be a surprise that the design variables used are

not necessarily good predictors for the submodel since the significant factor study

originally conducted in Faas [2003] were not looking at the intermediate outputs (i.e.,

Yi’s) rather the factors deemed significant were as it related to what we are considering in

the higher-level (i.e., Zi’s). It is due to this insight that we conducted further

investigations on the proposed extension to the regression method with a simplified

simulation model, which is discussed in Section 5.4. For now, we proceed with the

resulting predictions of M6 and M6.1 which were used as inputs into the higher-level

model. Tables 62 and 63 depict a portion of Methods 6 and 6.1 representation inputs into

the higher-level model. It is clear from the comparison of the two sets of predictions that

the inclusion of controls, in addition to the design variables, in the regression model

 147

produced different inputs into the higher-level model. The utility of the extension, in

terms of being a better predictor, cannot be directly assessed by merely looking at these

tables; however, any improvement should manifest itself in the outputs of the higher-

level model.

Table 62 - FTM M6 (Regression) Input Data
Scenario Y1 Y2 Y3

1 0.6669 0.1666 3.2447
2 0.6669 0.1666 3.2447

… … … …
9 0.6673 0.1666 3.2447

Table 63 - ASGM M6.1 (Regression with Controls) Input Data
Scenario Y1 Y2 Y3

1 0.6665 0.1662 3.2492
2 0.6665 0.1667 3.2427
… … … …
9 0.6678 0.1655 3.2436

Next we investigate the model aggregation representation of M7 (ANN) and

discuss the process on how we obtained the final model chosen as the input into the

higher-level model. Three predictive ANN models (FANN, RBF, and GRNN) were

investigated and evaluated for the effects of the different parameters (as it pertains to a

specific type of ANN) on model performance. For model performance we used the

average RMSE for the three submodel outputs to determine the “best” model. In addition

to the RMSE criteria, ANN model run time was also considered, when applicable. As

mentioned in the training and testing data set-up, we used the 5-fold method for the

training/testing data split. Recall from Table 54 that a total of 720 training exemplars and

180 testing exemplars were used at the submodel for each fold. Each exemplar consisted

of five elements (X1, X2, Y1, Y2, Y3), where the first two elements were used as the input

variables and the last three elements were the output (target) variables.

For the feed-forward ANN, we trained the network on a single hidden layer

[Hornik et al., 1989] and used a linear transfer function (purelin in Matlab) at the output

layer. The number of nodes in the hidden layer (neurodes) was varied from two to six

 148

[Looney, 1997:91-92]. Two different transfer functions: log-sigmoid (logsig in Matlab)

and the hyperbolic tangent sigmoid (tansig in Matlab) were also allowed to vary. Since

the newff function in Matlab produces different predictions every time the routine is run

without establishing any initial weights and/or biases (due to the different starting point

in the re-initialization of the weights and biases), the average of 30 feed-forward runs

were used to determine which structure (for the different combination of transfer function

and neurodes) had the lowest RMSE. The data pre-processing performed on the input

feature data was normalization between 0 and 1 [Looney, 1997:88]. The training

parameters used were: mean squared error goal = 0.0001 and the number of iterations for

training = 500 epochs. Overall, 10 sets of FANN submodels were evaluated. The

corresponding figure for the number of neurodes versus RMSE FANN analysis is

displayed in Figure 64.

2 2.5 3 3.5 4 4.5 5 5.5 6
3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6
x 10-3

Number of nodes in hidden layer

R
M

S
E

Feedforward NN ASGModel Unsch Mx

tansig
logsig

Figure 64 - ASGM LL FANN (Method 7)

 For the radial basis function (RBF) neural network the Matlab function newrb

was used and the parameters that were allowed to vary were: the spread (σ = .5:0.1: 2)

and the neurodes (MN = 2:10) [Shin and Goel, 2000] for a total of 144 RBF submodels.

Figure 65 depicts the results on the testing data for the RBF.

 149

2

4

6

8

10

0.5

1

1.5

2
3.348

3.35

3.352

3.354

3.356

3.358

3.36

3.362

3.364

x 10-3

Max number of neurons

RBF Testing Analysis - ASGM Lower Level

Spread

A
ve

ra
ge

 T
es

t R
M

S
E

RMSE

Figure 65 - ASGM LL RBF (Method 7)

For the general regression neural network (GRNN) the Matlab function newgrnn

was used with the same spread variation as the RBF; a total of 16 GRNN submodels were

evaluated. The form of feature data pre-processing for both RBF and GRNN was

standardization where each feature column’s mean is transformed to zero with a standard

deviation of one. The corresponding figure for the spread versus RMSE GRNN analysis

is displayed in Figure 66.

0.5 1 1.5 2
3.325

3.33

3.335

3.34

3.345

3.35

3.355

3.36

3.365

3.37
x 10-3

Spread values

R
M

S
E

Generalized Regression NN ASG Model - Unsch Mx

Trng
Test

Figure 66 - ASGM Submodel GRNN (Method 7)

Table 64 summarizes the best structure and the parameters used for each ANN for the

submodel analysis of the ASGM. A 2-2-3 structure for the feed-forward ANN in Table

64 indicates 2 inputs, 1 hidden layer with 2 nodes and 3 outputs. A Tansig transfer

function was used in the hidden layer. Note that the GRNN and the RBF generated the

 150

smallest RMSE, but the run time of the GRNN was significantly shorter than that of the

RBF, thus GRNN was used as the ANN metamodel for Method 7.

Table 64 - Method 7 ASGM ANN Attributes
ANN Parameters Test RMSE

FANN
node structure: 2-2-3
transfer functions: Tansig
run time in secs: 32.65

0.0039

RBF
σ : 0.9
MN: 2
run time: 333.71

0.0033

GRNN σ : 2.0
run time in secs: 4.49 0.0033

Since there are only two inputs involved in the ASGM simulation, it is easy to visualize

the ANN predictions for the different submodel output targets at different values of the

simulation inputs. Figures 67 to 72 depict the contour and surface plots of the GRNN

generated predictions. Note that the FAR (X1) and PHML (X2) input values are

standardized in Figures 67 to 72. The real utility of these plots is in the realization of the

limitation on the prediction capability of the model; that is, at certain input values the

model will generate the same prediction. For example, on the surface plot where the

plateaus occur, the prediction values will be the same.

False Alarm Rate (X1)

P
H

M
 L

ev
el

 (X
2)

ASGM - GRNN Contour Plot for Y1

-5 0 5 10
-5

0

5

10

trn contours
(0.5,0.5)
(4,12)
(6,16)
(9,25)
(15,35)

Figure 67 - ASGM GRNN Y1 Contour Plot

Figure 68 - ASGM GRNN Y1 Surface Plot

 151

False Alarm Rate (X1)

P
H

M
 L

ev
el

 (X
2)

ASGM - GRNN Contour Plot for Y2

-5 0 5 10
-5

0

5

10

trn contours
(0.5,0.5)
(4,12)
(6,16)
(9,25)
(15,35)

Figure 69 - ASGM GRNN Y2 Contour Plot

Figure 70 - ASGM GRNN Y2 Surface Plot

False Alarm Rate (X1)

P
H

M
 L

ev
el

 (X
2)

ASGM - GRNN Contour Plot for Y3

-5 0 5 10
-5

0

5

10

trn contours
(0.5,0.5)
(4,12)
(6,16)
(9,25)
(15,35)

Figure 71 - ASGM GRNN Y3 Contour Plot

Figure 72 - ASGM GRNN Y3 Surface Plot

Table 65 depicts a portion of the M7 submodel aggregation input into the higher-level

model.

Table 65 - ASGM M7 (ANN-GRNN) Input Data
Scenario Y1 Y2 Y3

1 0.6668 0.1666 3.2446
2 0.6668 0.1667 3.2446

… … … …
9 0.6670 0.1666 3.2450

 152

Next we consider including controls in the input feature of the ANN. Similar to

the regression extension method (M6.1), for M7.1 we investigate the effects on the neural

network prediction when controls are included in the input feature. The set-up for the

feed-forward ANN is identical with M7 except that the number of nodes in the hidden

layer (neurodes) was varied from two to twenty. Overall, 38 sets of FANN submodels

were evaluated for M7.1. The corresponding figure for the number of neurodes versus

RMSE FANN analysis is displayed in Figure 73.

2 4 6 8 10 12 14 16 18 20

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2
x 10-3

Number of nodes in hidden layer

R
M

S
E

Feedforward NN ASGModel Unsch Mx

tansig
logsig

Figure 73 - ASGM LL FANN with Controls (Method 7.1)

 For the radial basis function (RBF) neural network the parameters that were

allowed to vary were: the spread (σ = .5:.1: 2) and the neurodes (MN = 2:20), for a total

of 304 RBF submodels. Figure 74 depicts the results on the testing data for the RBF.

0

5

10

15

20 0.5

1

1.5

2

3.1

3.15

3.2

3.25

3.3

3.35

x 10-3

Spread

RBF Testing Analysis - ASGM Lower Level

Max number of neurons

A
ve

ra
ge

 T
es

t R
M

S
E

RMSE

Figure 74 - ASGM LL RBF with Controls (Method 7.1)

 153

In the general regression neural network (GRNN) the Matlab function newgrnn

was used with the same spread variation as the RBF; a total of 16 GRNN models were

evaluated at the submodel. The form of feature data pre-processing for both RBF and

GRNN was standardization where each feature column’s mean is transformed to zero

with a standard deviation of one. The corresponding figure for the spread versus RMSE

GRNN M7.1 analysis is displayed in Figure 75.

0.5 1 1.5 2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Spread values

R
M

S
E

Generalized Regression NN ASG Model - Unsch Mx

Trng
Test

Figure 75 - ASGM LL GRNN with Controls (Method 7.1)

 Table 66 summarizes the best structure and the parameters used for each ANN for

the submodel analysis of the ASGM using M7.1. In Table 66, a 19-2-3 structure for the

feed-forward NN indicates 19 inputs, 1 hidden layer with 2 nodes and 3 outputs. The

GRNN generated the smallest RMSE therefore was used as the ANN metamodel for

Method 7.1. Table 67 depicts a portion of the M7.1 submodel aggregation input into the

higher-level model.

Table 66 - Method 7.1 ASGM ANN with Controls Attributes
ANN Parameters Test RMSE

FANN

node structure: 19-2-3
transfer functions: Tansig
run time in secs: 367.4

0.0044

RBF

σ : 0.9
MN: 20
run time: 1164.1

0.0031

GRNN σ : 1.2
run time in secs: 6.1 0.0021

 154

Table 67 - ASGM M7.1 (ANN-GRNN with Controls) Input Data
Scenario Y1 Y2 Y3

1 0.6661 0.1664 3.2465
2 0.6662 0.1667 3.2449

… … … …
9 0.6673 0.1661 3.2430

5.3.4.2 Higher-Level Model

The Direct Method approach along with the ten alternate methods described were

implemented as part of the input for ASGM higher-level model. At the higher-level for

the ASGM, the outputs of interest are Mission Capable Rate (Z1: MCR), Not-Mission

Capable for Maintenance (Z2: NMCM), Not-Mission Capable for Supply (Z3: NMCS)

and Flying Scheduling Effectiveness Rate (Z4: FSER). After running the submodel and

feeding the output, using the DM and the different alternate methods, as an input into the

higher-level model, we need to determine if any of the alternate methods are significantly

different from the Direct Method approach. For this comparative analysis we initially

utilize the paired-t confidence interval approach as described in Law [2006:552-561] to

form the approximate 100(1-α) percent simultaneous confidence interval (Bonferroni

inequality) where we set the DM approach as the standard to compare all other methods

to. We examined the across-scenario comparison for the output of the higher-level

model. The initial analysis is to examine how the various aggregation techniques can

handle reproducing the simulation model means at the replication level and therefore

validate the techniques’ ability to perform general prediction of the simulation model.

For the across-scenario analysis, we examined the replication-by-replication

results of Scenarios 1-9. The partial results for the higher-level outputs Z1, Z2, Z3 and Z4

along with the sample means and variances for each aggregation methods, where j is the

replication number, are shown in Tables 68 to 71, respectively.

 155

Table 68 - ASGM MCR (Z1) for all Scenarios
j DMj M1j M2j M3j M4j M5j M6j M6.1j M7j M7.1j M8j
1 0.8731 0.8758 0.8758 0.8758 0.8758 0.8757 0.8758 0.8758 0.8758 0.8758 0.8758
2 0.8779 0.8789 0.8789 0.8789 0.8789 0.8787 0.8789 0.8789 0.8789 0.8788 0.8789
...

900 0.7877 0.7937 0.7937 0.7937 0.7937 0.7934 0.7937 0.7937 0.7937 0.7938 0.7937
Mean 0.8311 0.8317 0.8317 0.8317 0.8317 0.8317 0.8317 0.8317 0.8317 0.8317 0.8317

Variance 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013

Table 69 - ASGM NMCM (Z2) for all Scenarios
j DMj M1j M2j M3j M4j M5j M6j M6.1j M7j M7.1j M8j
1 0.1215 0.1189 0.1189 0.1189 0.1189 0.1190 0.1189 0.1189 0.1189 0.1189 0.1189
2 0.1169 0.1159 0.1159 0.1159 0.1159 0.1161 0.1160 0.1160 0.1159 0.1160 0.1159
...

900 0.2025 0.1968 0.1968 0.1967 0.1967 0.197 0.1967 0.1967 0.1967 0.1967 0.1967
Mean 0.1613 0.1608 0.1608 0.1607 0.1607 0.1608 0.1608 0.1608 0.1608 0.1607 0.1607

Variance 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012

Table 70 - ASGM NMCS (Z3) for all Scenarios
j DMj M1j M2j M3j M4j M5j M6j M6.1j M7j M7.1j M8j
1 0.0054 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053
2 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052
...

900 0.0098 0.0095 0.0095 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0095 0.0096
Mean 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076

Variance 3.400E-06 3.387E-06 3.387E-06 3.392E-06 3.392E-06 3.394E-06 3.389E-06 3.389E-06 3.386E-06 3.374E-06 3.392E-06

Table 71 - ASGM FSER (Z4) for all Scenarios
j DMj M1j M2j M3j M4j M5j M6j M6.1j M7j M7.1j M8j
1 0.9458 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460
2 0.9444 0.9477 0.9477 0.9477 0.9477 0.9477 0.9477 0.9477 0.9477 0.9477 0.9477
...

900 0.9083 0.9097 0.9097 0.9097 0.9097 0.9097 0.9097 0.9097 0.9097 0.9097 0.9097
Mean 0.9257 0.9258 0.9258 0.9258 0.9258 0.9258 0.9258 0.9258 0.9258 0.9258 0.9258

Variance 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

 The initial Bonferroni α-level chosen for the ASGM means comparison analysis

was that of 0.10 for an overall confidence level of at least 99%, similar to theα-level

chosen in the FTM means comparison. However, depending on the higher-level output

examined, the results seemed contradictory; that is, for Z1 and Z2, none of the aggregation

methods produced means that were statistically the same at the higher-level model. On

the other hand, Z4 indicated that any of the submodel aggregation methods were

acceptable, while Z3 indicated all but M6 and M6.1 were acceptable methods. This led to

a further examination of the α-level chosen for the means comparison analysis as

 156

depicted in Table 72. “All” in Table 72 signifies that all submodel aggregation methods

produced means that are similar to the Direct Method for the higher-level simulation

outputs. Conversely, “None” indicates that none of the submodel aggregation methods

produced means that are similar to the Direct Method for the higher-level simulation

outputs.

Table 72 - ASGM Bonferroni α Comparison
 Individual Confidence Interval

 99.999% 99.99% 99.9% 99.5% 99% 98% 97.5% 95%

 Overall Confidence Interval
(Bonferroni α)

HL Output 99.99%
(0.0001)

99.9%
(0.001)

99%
(0.01)

95%
(0.05)

90%
(0.1)

80%
(0.2)

75%
(0.25)

50%
(0.5)

Z1 All All All
M1, M2,
M5, M6,

M6.1, M7
None None None None

Z2 All All All M5, M6,
M6.1 None None None None

Z3 All All All All All but
M6, M6.1 M7.1 M7.1 None

Z4 All All All All All All All All

As can be observed from Table 72, as the overall α-level increases (conversely

the individual confidence interval are decreasing), more and more of the alternate

aggregation methods are being rejected as an acceptable aggregation method for the

means. Table 72 also depicts which higher-level outputs are sensitive to the type of

aggregation conducted at the submodel which is apparent for Z1 and Z2 at α ≥ 0.10. It is

also clear from Table 72 that Z4 is not sensitive to the type of aggregation conducted at

the submodel. Based on Table 72, the overall α-level chosen for analysis that follows is

α = 0.05. Since there are ten intervals (g = 10) to construct for each method, each

interval is set to 99.5% (1-α/g) to yield an overall confidence level of at least 95%, where

α = 0.05. From this, we can deduce (with a confidence level of at least 1-α) that method

g differs from the standard Direct Method approach if the interval μg-μDM misses zero,

and that method g is not significantly different from the DM approach if the confidence

interval contains zero. Tables 73 to 76 show the 99.5% individual confidence intervals

 157

for μg-μDM, for g = 1,..,10 (the ten different alternate methods) for the different higher-

level model outputs using the paired-t approach to confidence interval formation. The

interval(s) with a single asterisk signify those that are not significantly different from the

DM approach, indicating a good candidate method for aggregation. In addition, only

intervals with an asterisk have an accompanying difference in the sample means,

M DM−g (e.g., in Table 74, M DM−g is only included for Methods 5, 6, and 6.1) to

evaluate which alternative aggregation method is more precise; the smallest difference in

the sample means is indicated with a double asterisk.

Table 73 - ASGM MCR (Z1) 99.5% Confidence Interval

Comparisons with the Standard

g Method M DM−g Half-length Interval

1 Mean 5.82E-04 5.83E-04 (-1.1E-06, 1.16E-03)*
2 Normal(Mean,se) 5.82E-04 5.83E-04 (-1.2E-06, 1.16E-03)*
3 MeanCV n/a n/a (1.46E-05, 1.19E-03)
4 Normal(MeanCV,seCV) n/a n/a (1.45E-05, 1.19E-03)
5 Dist Fitting 5.52E-04** 5.61E-04 (-8.8E-06, 1.11E-03)*
6 Regression 5.79E-04 5.88E-04 (-8.8E-06, 1.17E-03)*
7 Regression w/ Controls 5.79E-04 5.88E-04 (-8.8E-06, 1.17E-03)*
8 ANN 5.83E-04 5.84E-04 (-1.6E-06, 1.17E-03)*
9 ANN w/ Controls n/a n/a (3.12E-05, 1.18E-03)

10 MetaSim n/a n/a (1.23E-05, 1.18E-03)

Table 74 - ASGM NMCM (Z2) 99.5% Confidence Interval
Comparisons with the Standard

g Method M DM−g Half-length Interval

1 Mean n/a n/a (-1.10E-03, -5.75E-06)
2 Normal(Mean,se) n/a n/a (-1.10E-03, -5.67E-06)
3 MeanCV n/a n/a (-1.14E-03, -2.00E-05)
4 Normal(MeanCV,seCV) n/a n/a (-1.14E-03, -2.00E-05)
5 Dist Fitting 5.229E-04** 5.25E-04 (-1.05E-03, 2.28E-06)*
6 Regression 5.502E-04 5.56E-04 (-1.11E-03, 6.15E-06)*
7 Regression w/ Controls 5.502E-04 5.56E-04 (-1.11E-03, 6.15E-06)*
8 ANN n/a n/a (-1.11E-03, -2.60E-06)
9 ANN w/ Controls n/a n/a (-1.11E-03, -4.19E-05)

10 MetaSim n/a n/a (-1.13E-03, -1.80E-05)

 158

Table 75 - ASGM NMCS (Z3) 99.5% Confidence Interval
Comparisons with the Standard

g Method M DM−g Half-length Interval

1 Mean 2.706E-05 3.45E-05 (-6.15E-05, 7.41E-06)*
2 Normal(Mean,se) 2.704E-05 3.45E-05 (-6.15E-05, 7.42E-06)*
3 MeanCV 2.560E-05 3.26E-05 (-5.82E-05, 6.95E-06)*
4 Normal(MeanCV,seCV) 2.560E-05 3.26E-05 (-5.82E-05, 6.95E-06)*
5 Dist Fitting 2.937E-05 3.73E-05 (-6.67E-05, 7.92E-06)*
6 Regression 2.863E-05 3.26E-05 (-6.13E-05, 4.02E-06)*
7 Regression w/ Controls 2.863E-05 3.26E-05 (-6.13E-05, 4.02E-06)*
8 ANN 2.792E-05 3.33E-05 (-6.12E-05, 5.39E-06)*
9 ANN w/ Controls 3.099E-05 4.34E-05 (-7.44E-05, 1.24E-05)*

10 MetaSim 2.553E-05** 3.26E-05 (-5.82E-05, 7.10E-06)*

Table 76 - ASGM FSER (Z4) 99.5% Confidence Interval
Comparisons with the Standard

g Method M DM−g Half-length Interval

1 Mean 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)*
2 Normal(Mean,se) 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)*
3 MeanCV 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)*
4 Normal(MeanCV,seCV) 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)*
5 Dist Fitting 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)*
6 Regression 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)*
7 Regression w/ Controls 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)*
8 ANN 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)*
9 ANN w/ Controls 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)*

10 MetaSim 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)*

 The outputs in Tables 73 to 76 indicate which method is most appropriate, when

comparing the means, as an aggregation method employed at the submodel for specific

higher-level outputs. Note that the methods without the single asterisk (*) signify that the

output of the means at the higher-level will be statistically different from the DM if these

methods are implemented as the input for the higher-level model. As can be seen from

the confidence interval means comparison for the different outputs at the higher-level,

Methods 1, 2, 5, 6, 6.1 and 7 are good candidates as input into the higher level model for

the MCR (Z1) output, which indicates that these methods implemented at the submodel

produced statistically similar outputs for the mean in the next higher-level. For the

NMCM (Z2) output, Methods 5, 6, and 6.1 are good candidates for the submodel

aggregation. Finally, for the NMCS (Z3) and FSER (Z4) outputs, all candidate methods

are acceptable submodel aggregation replacements. In order to accommodate all four

 159

higher-level outputs, assuming no output prioritization is employed, we see that Methods

5, 6, and 6.1 are common aggregation methods thus a better acceptable method for means

comparison for the ASGM.

 In addition to capturing the means of the simulation for the DM, perhaps

capturing the distribution of the output at the higher-level for the DM might give us

another process of portraying the true nature of the simulation model. To demonstrate

the graphical comparison method of the different higher-level outputs, we examine the

graphical comparisons of the DM versus selected alternate aggregation methods for the

MCR (Z1) output. Statistically, all but M3, M4, M7.1, and M8 are good candidate

aggregation methods for means comparison at the submodels. However, we need to

further examine the candidate methods in terms of their output distributions at the higher-

level. The graphical comparison analysis looks at one scenario at a time (Scenario 1) for

the candidate aggregation method with the lowest mean absolute difference (M5) to that

with the largest mean absolute difference (M7) in the means comparison for the MCR

output (see Table 73). The tool used for this graphical analysis is ExpertFit®. Figure 76

depicts the histogram comparison of the selected methods while Figure 77 depicts the

absolute-error plot of the histogram comparison. The blue bars in Figure 76 are the

histogram of the outputs at the higher-level with the Direct Method (no aggregation in the

submodel outputs). The red and the green bars depict the histograms of M5 and M7,

respectively. It is sometimes difficult to assess the differences or similarities in the

histograms, thus the histogram in Figure 76 is accompanied by its corresponding

absolute-error plot as shown in Figure 77. The differences are typically more apparent

when utilizing the absolute-error plot to compare histograms. However, we see in Figure

77 that the absolute-error between DM versus M5 and M7 are still difficult to visually

assess which is more similar to the DM in their distributions. This is a good example of

when to continue and assess the cdf instead of the histogram. When both visual

assessments fail, then the use of statistical methods such as the entropy and/or K-S test

becomes extremely useful.

 160

DM_ASGM_HL M5_ASGM_HL M7_ASGM_HL

0.00

0.05

0.10

0.15

Frequency-Comparison Plot

Interval Midpoint

Pr
op

or
tio

n

0.87 0.87 0.87 0.88 0.88 0.88 0.88

Figure 76 - ASGM Z1 Histogram Comparison

M5_ASGM_HL M7_ASGM_HL

0.00

0.05

0.10

0.15

0.20

Absolute-Error Plot

Interval Midpoint

Ab
so

lu
te

 E
rr

or
 (P

ro
po

rti
on

)

0.87 0.87 0.87 0.88 0.88 0.88 0.88

Figure 77 - ASGM Z1 Absolute-Error Histogram

 161

 Next we examine the distribution function comparisons which are shown in

Figures 78 and 79. Similar to the histogram comparison, direct visual comparison of the

methods using the cdf could be challenging therefore we look at the distribution-function-

differences plot in Figure 79 to compare the distribution functions in Figure 78. From

Figure 79, we can visually assess that M5 is more similar to DM than M7. The

ExpertFit® graphical output also depicts the mean difference from the compared method

(DM), which shows that M5 has a lower mean difference than M7, as compared to the

DM. Statistically M5 is slightly better, but practically both M5 and M7 are the same in

distribution as the DM.

DM_ASGM_HL M5_ASGM_HL M7_ASGM_HL

0.8676 0.8701 0.8726 0.8751 0.8776 0.8801 0.8826
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Distribution Function Plot

X-Value

F(
x)

 (P
ro

po
rti

on
)

Figure 78 - ASGM Z1 CDF Comparison

 162

M5_ASGM_HL (mean diff. = 0.03622) M7_ASGM_HL (mean diff. = 0.03882)

0.8676 0.8701 0.8726 0.8751 0.8776 0.8801 0.8826

0.00

0.05

0.10

0.15

0.20

0.00

-0.05

-0.10

-0.15

-0.20

Distribution-Function-Differences Plot

X-Value

Di
ffe

re
nc

e
(P

ro
po

rti
on

)

Figure 79 - ASGM Z1 CDF-Differences Plot

 Next we look at the K-S test result in Table 77 at α = 0.05. Recall that for the K-

S test, the null hypothesis (H0) is that the compared data are drawn from the same

distributions. The p-value indicates the α-level at which the null hypothesis will not be

rejected. The K-S statistic signifies the maximum distance between the compared

distribution functions. Based on Table 77, we can conclude that both M5 and M7

implemented at the submodel output generate outputs at the higher-level model that

comes from the same distribution as the DM.

Table 77 - FTM Z1 K-S Test
DM vs. Fail to Reject/Reject H0? p-value K-S stat
M5 Fail to Reject 0.19304 0.1500

M7 Fail to Reject 0.19304 0.1500

 163

5.4 Routing Model (RM)

The necessity of the Routing Model (RM) came about as a consequence of the results in

the ASGM analysis when comparing the different aggregation methods, specifically for

the M6 and M6.1 regression methods. The ASGM showed no significant factors

(simulation inputs) across all the different folds in predicting the different submodel

simulation outputs during the regression analysis (see Tables 58 to 61). We needed to

create a simple model that had clear significant inputs in relation to the output of interest.

The focus in the Routing Model is more on the direct effect of specific aggregation

methodologies at one level, rather than evaluating the aggregation effects in the next

higher-level. This means that not all alternate aggregation methodologies will be

discussed nor analyzed for the Routing Model. This narrower focus is mainly due to time

constraints, but the investigation of the different expansion to the regression method was

deemed significant enough to warrant further investigation.

5.4.1 Routing Model Assumptions

The assumption at this point is that the full model has already been decomposed. The

decomposed portion which is being aggregated is the submodel representation.

5.4.2 Routing Model Description

The Routing Model was built using Rockwell Software’s ARENA™ Version 10.0 entity-

based simulation software. The simulation represents the aircraft routing portion of some

larger full model as depicted in Figure 80.

 164

Figure 80 - Routing Model Diagram

 The following are the details involved in the construction of the Routing Model in

Arena:

 Approximately 1000 aircraft (AC; entities) arrive to the system for a period of
5 years (250 days/year), 1 AC per arrival, Exponential(1.5) days time between
arrival

 Upon entry, ACs are assigned entry time and Uniform(0,1) attributes

 Of these 1000 ACs, approximately 850 actually flow through the system

 500 replications per scenario

 High-Low (1-2) scenario set up (simulation model input X1)

• High – scenario 1: with an 80% probability of going through the H-routes
• Low – scenario 2: with a 20% probability of going through the H-routes

 Delay for each route in hours (these are the random controls)

• Route H1 - Normal(25,3.5)
• Route H2 - Uniform(15,30)
• Route H3 - Triangular(4,7.5,21)
• Route L1 - Normal(2,0.2)
• Route L2 - Uniform(0.75,1.5)

 One measure of performance: Time in Route (simulation model output Y1)

 165

5.4.3 Routing Model Training/Testing Data set-up

The k-fold cross-validation, with k = 5, was used [Devijver and Kittler, 1982:10] in the

evaluation of the RM for the regression and the ANN techniques. This method partitions

the data into two groups, k-times, and is used to train the predictor and the other

remaining set is used to test the predictor. We employed the general rule of ~80/20 data

partitioning for training and testing data for each fold, i.e., the input parameter settings

used from the computer simulation to train the ANN and the Regression are the first 400

replications per scenario and are depicted in Table 78. The last 100 replications within a

scenario were used to examine the ability of the approximating functions to generalize to

previously unseen combination samples. All the 2 different scenarios were replicated

500 times, for a total of 1000 sample data points (or exemplars). Thus, for the submodel

output, 800 data points were used to train the neural network and 200 data points were

used for testing. This procedure was repeated 5-times with different training/testing sets

and the average from all the folds is what the reported values are based on.

Table 78 - RM 5-fold Training/Testing Data Set-up

Fold Scenario # Training Data:
Replication #

Testing Data:
Replication #

1 1 1-400 401-500
2 1-400 401-500

Fold 1 Total 800 200
… … … …

5 1 101-500 1-100
2 101-500 1-100

Fold 5 Total 800 200
All Folds Total 4000 exemplars 1000 exemplars

5.4.4 Routing Model Output Comparison

The output comparison is only accomplished at one level for the Routing Model. Thus,

all the previously discussed higher-level comparisons along with the submodel

comparisons will also be performed. The main focus for the RM analysis will be on the

ANN and regression techniques along with the expansions proposed to these two

methods. Based on the performance in accuracy and speed on the two previous

 166

application models, only the GRNN will be used for the ANN model. In addition to

examining the inclusion of random controls in the input matrix, the type of control was

also deemed necessary in our investigation. In order to avoid confusion on the pre-

established naming and numbering convention from the two previous models, the

aggregation methods performed for the RM will be designated as “T” for techniques.

The techniques that are examined for the Routing Model are:

(1) GRNN (T1) – Generalized Regression Neural Network with design variable
only

(2) GRNN Bauer Wilson Controls (BWC) (T2) – GRNN with design variable
plus Bauer and Wilson [1993] standardized random controls

(3) GRNN ConR (T3) – GRNN with design variable plus (Controls - userMean)
centered random controls

(4) GRNN ConT (T4) – GRNN with design variable plus random controls with
no pre-processing

(5) Regression (T5) – Regression with design variable only

(6) Regression BWC (T6) – Regression with design variable plus Bauer and
Wilson [1993] pre- standardized random controls

(7) Regression ConR (T7) – Regression with design variable plus (Controls -
userMean) centered random controls

(8) Regression ConT (T8) – Regression with design variable plus random controls
with no pre-processing

Table 79 depicts the mean and standard deviation of the different random controls

collected for the Routing Model.

Table 79 - RM Random Controls
Random
Controls Statistics BWC ConR ConT

H1

Mean

0.0095 0.0018 25.0018
H2 -0.0258 -0.0045 22.4955
H3 -0.0056 -0.0006 10.8328
L1 0.0196 0.0002 2.0002
L2 -0.0163 0.0000 1.1250
H1

Standard deviation

1.0127 0.2165 0.2165
H2 0.9465 0.2510 0.2510
H3 0.9987 0.2220 0.2220
L1 1.0189 0.0126 0.0126
L2 0.9811 0.0129 0.0129

 167

Next we perform the step-wise regression on the different controls to determine which

variables are significant in predicting the output. The significant factors for the

regression with different types of controls are listed in Tables 80 to 82.

Table 80 - RM Regression BWC (T6) Significant Factors for Y1
Fold Output X1 C1 C2 C3 C4 C5

1

Y1

1 1 1 1 0 0
2 1 1 1 1 0 0
3 1 0 1 1 0 0
4 1 0 1 1 0 0
5 1 0 1 1 0 0

Table 81 - RM Regression ConR (T7) Significant Factors for Y1
Fold Output X1 C1 C2 C3 C4 C5

1

Y1

1 0 1 1 0 0
2 1 1 1 1 0 0
3 1 0 1 1 0 0
4 1 0 1 1 0 0
5 1 0 1 1 0 0

Table 82 - RM Regression ConT (T8) Significant Factors for Y1
Fold Output X1 C1 C2 C3 C4 C5

1

Y1

1 0 1 1 0 0
2 1 1 1 1 0 0
3 1 0 1 1 0 0
4 1 0 1 1 0 0
5 1 0 1 1 0 0

Table 83 lists the results of the neural network and regression techniques in terms of the

RMSE, MAE and MAPD of the different predictions as compared to the standard.

Observe that errors are fairly consistent across the different techniques except for the

regression on the unprocessed controls (Regression ConT). The large error signifies that

the regression model is unable to correctly predict using its given combination of design

variables and controls.

 168

Table 83 - RM Prediction Errors
Output Technique RMSE MAE MAPD

Time in Route

GRNN 0.7632 0.6049 0.0279
GRNN BWC 0.9054 0.6478 0.0307
GRNN ConR 0.7814 0.6247 0.0294
GRNN ConT 0.7814 0.6247 0.0294
Regression 0.7631 0.6049 0.0279
Regression BWC 0.7523 0.5950 0.0277
Regression ConR 0.7554 0.5991 0.0278
Regression ConT 5.5825 5.5208 0.2553

Legend:
 GRNN: Artificial Neural Network on design variable only
 Regression: Multiple Regression on design variable only
 BWC: Bauer and Wilson 1993 random controls pre-processing plus design variable; where BWC pre-processing is

 (sqrt(count)/stdev)*(Controls-userMean)
 ConR: (Controls-userMean) pre-processing plus design variable
 ConT: no pre-preprocessing on random controls plus design variable

To test whether the difference in the error predictions are significant, we utilize the

paired-t confidence interval approach [Law, 2006:552:561] to form the approximate

100(1-α) percent simultaneous confidence interval (Bonferroni inequality) where we set

the DM approach as the standard to compare all other techniques to. We examined the

across-scenario comparison for the output of RM simulation. This initial analysis

examines how the various aggregation techniques can handle reproducing the simulation

model means at the replication level and therefore validate the techniques’ ability to

perform general prediction of the simulation model.

For the across-scenario analysis, we examined the replication-by-replication

results of Scenarios 1 and 2. The partial TiR (Y1) result is shown in Table 84 along with

the sample means and variances for each technique, where j is the replication number.

Table 84 - RM TiR (Y1) for all Scenarios
j DMj T1j T2j T3j T4j T5j T6j T7j T8j
1 47.2059 47.2497 46.9225 46.9944 46.9944 47.2497 47.1577 47.1915 52.7120
2 46.3006 47.2497 47.1429 47.1975 47.1975 47.2497 47.2509 47.2607 52.7812
...

199 14.4468 14.1498 14.0805 14.1302 14.1302 14.1498 14.1772 14.1926 19.7131
200 13.8180 14.1498 14.0550 14.0643 14.0643 14.1498 14.1941 14.1895 19.7099

Mean 30.6998 30.6998 30.7075 30.6989 30.6989 30.6998 30.6984 30.7000 36.2205
Variance 275.379 275.278 272.823 274.043 274.043 275.278 275.364 275.335 275.335

 Since there are eight intervals (g = 8) to construct, each interval were set at

98.75% (1-α/g) to yield an overall confidence level of at least 90%, where α = 0.1. From

this, we can deduce (with a confidence level of at least 1-α) that technique g differs from

 169

the standard Direct Method approach if the interval μg-μDM misses zero, and that method

g is not significantly different from the DM approach if the confidence interval contains

zero. Table 85 shows the 98.75% confidence intervals for μg-μDM, for g = 1,..,8 (the eight

different alternate techniques) for the different outputs using the paired-t approach to

confidence interval formation. The interval(s) with a single asterisk signify those that are

not significantly different from the DM approach, indicating a good candidate technique

for aggregation. In addition, only intervals with an asterisk have an accompanying

difference in the sample means, T DM−g (e.g., in Table 85, T DM−g is included for

all techniques except for T8) to evaluate which alternative aggregation technique is more

precise; the smallest difference in the sample means is indicated with a double asterisk.

Table 85 - RM TiR (Y1) 98.75% Confidence Interval

Comparisons with the Standard

g Technique T DM−g Half-length Interval

1 GRNN 1.14E-13 0.0566 (-0.0566, 0.0566)*
2 GRNN BWC 0.0077 0.0697 (-0.0620, 0.0775)*
3 GRNN ConR 0.0009 0.0604 (-0.0613, 0.0595)*
4 GRNN ConT 0.0009 0.0604 (-0.0613, 0.0595)*
5 Regression 3.55E-15** 0.0566 (-0.0566, 0.0566)*
6 Regression BWC 0.0013 0.0573 (-0.0586, 0.0559)*
7 Regression ConR 0.0003 0.0576 (-0.0573, 0.0578)*
8 Regression ConT n/a n/a (5.4632, 5.5783)

 The outputs in Table 85 indicate which technique is most appropriate, when

comparing the means. Note that the methods without the single asterisk (*) signify that

the means of the simulation output are statistically different from the DM. As far as

practical significance, this is something that the analyst and the customers/users need to

consider aside from the statistical significance of the analysis results. That is, does is

really matter that the absolute mean difference from T1 is 1.14E-13 hours versus 0.0013

hours from T6?

 Perhaps the next logical analysis aside from means comparison is to check

whether the distributions of the different techniques differ from or are similar to the DM.

 170

Comparing the distributions should provide another process of portraying the true nature

of the simulation model. To demonstrate the graphical comparison method of the

different outputs, we examine the cdf graphical comparisons of the DM versus selected

alternate aggregation techniques. The different cdf comparisons that will be conducted

are 1) DM versus T1-T4, 2) DM versus T5-T8, and 3) DM versus T1 and T5, where the

graphical comparisons are based on scenario 2; the behavior of the different techniques in

scenario 1, located in Appendix D, is very similar to that of what is presented next.

 The cdf and distribution-function-differences plots for the DM versus T1 to T4

(GRNN group) are depicted in Figures 81 and 82, respectively. From Figure 81 we

observe that GRNN (T1) visibly doesn’t fit the distribution of DM as well as T2 to T4.

T3 and T4 are basically the same line plot so the T3 line is not displayed in Figures 81

and 82. Figure 82 displays the mean difference of the compared techniques to the DM.

It can be observed in this plot that GRNN BWC (T2) has the smallest mean difference

from DM while T1 has the largest mean difference from DM.

DM GRNN GRNN BWC GRNN ConR GRNN ConT

13.4 13.9 14.4 14.9 15.4 15.9 16.4 16.9 17.4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Distribution Function Plot

X-Value

F(
x)

 (P
ro

po
rti

on
)

Figure 81 - RM Y1 CDF Comparison (1)

 171

GRNN (mean diff.
0.06414)

GRNN BWC (mea
diff. = 0.04207)

GRNN ConR (mea
diff. = 0.04224)

GRNN ConT (mea
diff. = 0.04224)

13.4 13.9 14.4 14.9 15.4 15.9 16.4 16.9 17.4

0.0

0.2

0.4

0.6

0.0

-0.2

-0.4

-0.6

Dist-Fnc-Diff Plot

X-Value

Di
ffe

re
nc

e
(P

ro
po

rti
on

)

Figure 82 - RM Y1 CDF-Differences Plot (1)

Next we look at the K-S test result of comparison (1) in Table 86 at α = 0.10. According

to the K-S test we can conclude that T1 to T4 prediction outputs do not come from the

same distribution as the DM.

Table 86 - RM Y1 K-S Test (1)

DM vs. Fail to Reject/Reject H0? p-value K-S stat

T1 Reject 4.3E-13 0.5300

T2 Reject 1.2E-05 0.3400

T3 Reject 2.4E-05 0.3300

T4 Reject 2.4E-05 0.3300

The cdf and distribution-function-differences plots for the DM versus T5 to T8

(regression group) are depicted in Figures 83 and 84, respectively. From Figure 83 we

observe that GRNN ConT (T8) clearly doesn’t fit the distribution of DM as well as T5 to

 172

T7. The behavior of T5 differing from T6 and T7 is cloaked by the gross difference of

T8 from the other three techniques. Figure 84 displays the mean difference of the

compared techniques to the DM. It can be observed in this plot that Regression ConR

(T7) has the smallest mean difference from DM while T8 has the largest mean difference

from DM. Similar to the results in the neural network comparison, the addition of

controls also improves the prediction capability of the regression model.

DM Reg Reg BW C Reg ConR Reg ConT

13.4 14.4 15.4 16.4 17.4 18.4 19.4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Distribution Function Plot

X-Value

F(
x)

 (P
ro

po
rti

on
)

Figure 83 - RM Y1 CDF Comparison (2)

 173

Reg (mean
diff. =
0.04066)

Reg BW C
(mean diff. =
0.03236)

Reg ConR
(mean diff. =
0.03082)

Reg ConT
(mean diff. =
0.85114)

13.4 14.4 15.4 16.4 17.4 18.4 19.4

0.0

0.2

0.4

0.6

0.8

1.0

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Dist-Fnc-Diff Plot

X-Value

Di
ffe

re
nc

e
(P

ro
po

rti
on

)

Figure 84 - RM Y1 CDF-Differences Plot (2)

Next we look at the K-S test result of comparison (2) in Table 87 at α = 0.10. According

to the K-S test we can conclude that T5 to T8 prediction outputs do not come from the

same distribution as the DM.

Table 87 - RM Y1 K-S Test (2)

DM vs. Fail to Reject/Reject H0? p-value K-S stat

T5 Reject 4.3E-13 0.5300

T6 Reject 5.2E-08 0.4100

T7 Reject 6.0E-06 0.3500

T8 Reject 1.6E-45 1.0000

It is clear from Table 85 that GRNN (T1) and regression (T5) are very similar in the

means in the prediction of the true simulation output, but for completeness we examine

 174

the distribution plots of these two techniques as depicted in Figure 86. Figures 86 and 87

show that T1 and T5 are identical in distribution, but not necessarily similar with DM.

The dissimilarity in the distributions seems vast by merely looking at the cdf plots;

however, observe in Figure 87 that the mean difference is still quite small.

DM GRNN Reg

13.38 13.63 13.88 14.13 14.38 14.63 14.88 15.13
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Distribution Function Plot

X-Value

F(
x)

 (P
ro

po
rti

on
)

Figure 85 - RM Y1 CDF Comparison (3)

 175

GRNN (mean diff. = 0.13574) Reg (mean diff. = 0.13574)

13.38 13.63 13.88 14.13 14.38 14.63 14.88 15.13

0.0

0.2

0.4

0.6

0.0

-0.2

-0.4

-0.6

Distribution-Function-Differences Plot

X-Value

Di
ffe

re
nc

e
(P

ro
po

rti
on

)

Figure 86 - RM Y1 CDF-Differences Plot (3)

Next we look at the K-S test result of comparison (3) in Table 88 at α = 0.10. According

to the K-S test we can conclude that T1 and T5 prediction outputs do not come from the

same distribution as the DM, which was already previously observed in Tables 86 and 87,

respectively.

Table 88 - RM Y1 K-S Test (3)

DM vs. Fail to Reject/Reject H0? p-value K-S stat

T1 Reject 4.3E-13 0.5300

T5 Reject 5.2E-08 0.4100

5.5 Summary

For the ALS Sortie Generation Model, a structural aggregation at the submodel (i.e.,

unscheduled maintenance node) was performed. Similar to the FTM analysis, the ASGM

analysis showed that depending on which higher-level model output is deemed more

 176

important, dictated the type of aggregation that is best implemented at the submodel.

Without any sort of prioritization on the importance of the higher-level output, it was

determined that in general, Methods 5, 6 and 6.1 are representative aggregation methods

at the submodel for all four outputs of interest. The MCR (Z1) output was also

investigated in more detail by means of graphical comparison methods to compare the

outputs of the Direct Method to that of the applicable aggregation methods with the

smallest mean absolute difference (M5) and the largest mean absolute difference (M7).

For this additional analysis, we see that the initial confidence interval method comparison

agrees with the graphical and K-S test analysis. Based on the three comparison tests

performed for the higher-level MCR output, M5 and M7 are good alternate methods for

the DM at the submodel when seeking similar means and distribution in the higher-level

output. This result is highly desirable since the selected submodel aggregation methods

not only resembles the means, but also mimics the distribution of the Direct Method

outputs at the higher-level.

 Also in this chapter we investigated in more detail the regression and neural

network model expansion where we proposed not only using the typical design variables

for predictors/features but also including the random controls collected from the

simulation model for improved model prediction. The Routing Model experiment

showed that the inclusion of controls in the prediction models generated predictions that

are not only representative of the means of the simulation, but are also better

representation of the simulation output’s true distribution.

 The analyst needs to consider that although a specific aggregation method(s) for a

simulation is not statistically different from the standard Direct Method and results in a

better MAE, one has to consider the strengths and weaknesses of each method and the

ability of each analyst in employing the suggested methods. Also, in the absence of

previously simulated data, Methods 1-5 will be impossible to employ, unlike Methods 6

(Regression), 7 (ANN) and 8 (MetaSim) which can still generate approximations for the

submodels given the new inputs are in the range of which these methods were trained

upon.

 177

VI. Contributions and Future Research

6.1 Overview

This chapter provides a summary of the contributions made to the field of modeling and

simulation through the research conducted and presented in this document. A list of

potential areas for further investigation related to this research is also provided.

6.2 Research Contributions

This section discusses the contributions established during this dissertation research.

More often than not, simulation models are too complex and take a long time to run; a

tool that can be used for dealing with the complexity and run time issues is through the

use of metamodeling through aggregation. Additional reasons why there is a need for

aggregation in model development are lack of data, inadequate understanding of the

system, or inaccessibility to the actual simulation model. Aggregation simplifies a more

complex system in some specific way which enables the users to get a better grasp on the

system at hand. However, model aggregation tends to always produce information loss

on the original variables. In addition, the aggregate model will be but an imperfect

version of the original non-aggregated system. Although the abstracted model is usually

only able to estimate near correct predictions, it is nevertheless valuable by virtue of its

simplicity and execution speed. This loss of information manifested through the model

outputs is the main reason why we need to evaluate different aggregation techniques that

are more suitable for specific simulation models.

The typical and most common aggregation method in hierarchical simulation

modeling is through the use of averaging (i.e., taking the means) and using these as inputs

into a more complicated set of models. We recommend that the analyst should

investigate beyond just the means method and examine the effects of other statistical

aggregation techniques. By expanding the means method to incorporating a normal

distribution assumption, using variance reduction techniques, regression, neural networks

and MetaSim the analyst can take advantage of the strengths of these alternative

 178

techniques and assess which of these methods best represents their specific simulation

models. From a practical standpoint, the most important contribution in this research is

meeting the needs of the practicing analyst with the proper essential knowledge. Next,

we discuss the specific contributions generated with the research conducted and

presented in this document.

6.2.1 Aggregation Process Development

In this research, we developed a well-defined 3-step aggregation procedure for

hierarchical simulation depicted in Figure 87. The aggregation methodology developed

in this research provides an analytic foundation that formally defines the necessary steps

essential in appropriately and effectively simulating large hierarchical systems. Figure 87

outlines a 3-step process with the additional assumption that a set of hierarchical

simulation models are already in existence before executing the aggregation procedure.

Step 1 consists of identifying candidate submodels (entities, events, and/or processes) for

aggregation. In order to perform aggregation of large hierarchical simulation models, the

question of “what” and “how” needs to be addressed. To facilitate the “what” portion of

the aggregation process the hierarchical simulation model is characterized in a

mathematical format to aid in determining what portion of the entire simulation model

can be aggregated. The “how” part of the aggregation process are addressed in Section

3.6 by means of different statistical techniques such as regression, ANN, etc. The third

and final step in the process consists of comparing the simulation outputs of the Direct

Method and the different statistical techniques at the higher-level model in terms their

means and underlying distributions.

 179

Step 0

Step 1

Step 3Performance
Estimation

Step 2

A

B

C

sA

sB

ts

A

B

C

sA

sB

ts

Figure 87 - Overall Model Aggregation Procedure

6.2.2 Mathematical Framework Development

We not only defined a formal aggregation process, but also objectively identified what

part of a hierarchical simulation can be aggregated. A mathematical framework was

implemented to examine individual simulations in order to identify what part of the entire

system could be aggregated using a decomposition technique. This decomposition

process of large hierarchical simulations is founded upon an extension of previously

existing graph theoretic and network analysis methods. We have also validated previous

decomposition work by Bauer et al. [1985, 1991] and Matthes [1998] and showed other

rotation schemes can be applied as well. The decomposition process was demonstrated

for within-a-level (logical decomposition) and within-a-model (structural decomposition)

in Chapters 4 and 5, respectively.

 180

6.2.3 Suite of Aggregation Techniques

For this research, we designed and implemented a suite of standard and novel statistical

techniques for simulation aggregation capturing differences in maintaining data fidelity.

Table 89 - Aggregation Methodology Summary
Method Short Name Brief Description Comments

Mean (ilY)
Method 1

(M1)
- simplest method
- average across all observations and
replications; grand mean

- use all available data for
prediction
-prediction based on per scenario

Normal , sY il
J

⎛ ⎞
⎜ ⎟
⎝ ⎠

 Method 2
(M2)

- given sample size is large, J ≥ 30,
assumes data are normally distributed
with mean parameter derived from M1
and standard error (se) of the mean

- use all available data for
prediction
-prediction based on per scenario

MeanCV � �()()iYμ β Method 3
(M3)

- uses mean derived from the control
variate (CV) technique
- uses the Bauer and Wilson [1993]
standardized controls

- use all available data for
prediction
-prediction based on per scenario

l l() CV 11 Normal (,)
i iY Y sεμ β μ σ∼ Method 4

(M4)

- given sample size is large, J ≥ 30,
assumes data are normally distributed
with mean parameter derived from M3
and se

- use all available data for
prediction
-prediction based on per scenario
- goal is for se to be smaller than se
from M2

Distribution Fitting Method 5
(M5)

- uses all the data (down to the
observation level) of each lower-level
output and fits a distribution using
Arena®’s Input Analyzer

- use all available data for
prediction
-prediction based on per scenario

Regression Method 6
(M6)

- uses the ordinary least squares
approach
- uses one regression equation per
simulation output
- uses step-wise regression for design
variable (inputs) selection

- partition data into training and
test sets
- predictions based on test set
across all scenarios
- works with new design vars, esp.
useful when new sim runs do not
exist

Regression with Controls* Method 6.1
(M6.1)

- a novel expansion of M6 where the
random controls are included as
predictors

- partition data into training and
test sets
- predictions based on test set
across all scenarios
- works with new design vars, esp.
useful when new sim runs do not
exist

Artificial Neural Network (ANN) Method 7
(M7)

- uses FANN, RBF, and GRNN
- uses one ANN model for all
simulation outputs

- partition data into training and
test sets
- predictions based on test set
across all scenarios
- works with new design vars, esp.
useful when new sim runs do not
exist

ANN with Controls* Method 7.1
(M7.1)

- a novel expansion of M7 where the
random controls are included as
features

- partition data into training and
test sets
- predictions based on test set
across all scenarios
- works with new design vars, esp.
useful when new sim runs do not
exist

MetaSim* Method 8
(M8)

- a novel technique where the random
variates in the control variate (CV)
technique (used in M3 and M4) are
replaced with an estimate using the
Normal distribution

- if prediction is based on each
lower-level scenario, input matrix
only contains the control vars
- if prediction is based on all the
scenarios, include the design vars
with the control vars in the input
matrix
- works with new design vars, esp.
useful when new sim runs do not
exist

 *New or expansion to an existing methodology

 181

Several of the aggregation methodologies listed in Table 89 have been successfully used

in the field; however, what we have assembled for this research are a set of logical steps

necessary to carry out a successful aggregation study using the techniques listed in Table

89. We have categorized these different techniques depending on the accessibility of

simulation data and highlighted strengths and weaknesses associated with each. The

procedure for developing the training and testing data properly for use with specific

techniques was developed and discussed extensively. Key points include when to divide

the simulation data across replications or across scenarios to ensure proper data set-up

essential in appropriately and successfully implementing these statistical aggregation

techniques.

6.2.4 Prediction Accuracy Improvements

Improved prediction accuracy in the underlying distribution of the simulation output for

the regression and neural network aggregation techniques through the inclusion of

random controls in the prediction models. To the best of our knowledge, this expansion

to the regression and neural network techniques for prediction is a novel idea.

6.2.5 MetaSim Aggregation Technique Development

MetaSim is a novel technique where the random variates in the control variate (CV)

technique (used in Methods 3 and 4) are replaced with an estimate using the Normal

distribution. It is a regression model based on external design variables and internal

structural variables (controls). The idea is to replace the entire simulation model, at least

the portion that is being aggregated, with a prediction model (MetaSim). This technique

is discussed in detail in Section 3.6.8.

6.2.6 Demonstration of Techniques

Practical contributions comprise the demonstration of the overall methodology and each

of the aggregation techniques in the application chapters in a clear and concise manner.

In addition, the associated suite of algorithms developed within the Matlab environment

is provided to aid other analysts in using this procedure.

 182

6.3 Recommendations for Future Research

Within this research, there are a number of avenues for research opportunities that remain

to be explored. We present these areas that are believed to improve the performance of

the overall aggregation process.

6.3.1 Fusion

The fusion of individual neural network predictions needs to be explored for potential

increased prediction accuracy with neural network ensembles (e.g., combining

predictions of the FANN, RBF, and GRNN). In our application of the neural network

technique, we used the neural network with the lowest RMSE as the “best” model

representation for this specific method. However, fusing the outputs of these three

techniques could potentially produce an RMSE that is lower than the “best” individual

model.

6.3.2 Incremental Aggregation

In the two application models for this research, we only aggregated one “decomposed

portion” and assessed its impact on the higher-level model. Incremental aggregation of

the decomposed models for more than one node needs to be further explored to evaluate

its effects on the prediction accuracy as more and more nodes of the decomposed models

are aggregated. As discussed in Van Lienden [1998], as more and more nodes are

aggregated the prediction accuracy of the metamodeling technique increases. The point

of when to stop aggregating also needs to be assessed.

6.3.3 Multivariate Considerations

Multivariate consideration in the construction of statistical distribution modeling

aggregation of multiple outputs needs to be addressed. We assumed in our

implementation that each lower-level (or submodel) simulation output was independent,

which may not always be true in real-world situations. It might be better (and more

complex) from an information theoretic standpoint to capture the data jointly.

 183

6.3.4 Principal Component Regression (PCR)

When presented with a simulation model with several input parameters, principal

component regression on the input parameters of the regression and neural network

models needs to be considered. As with principal component analysis as a data pre-

processing tool, the analyst needs to evaluate the necessity of incorporating PCR before

performing the regression and/or neural network techniques. If the predictions are

improved with PCR incorporated in the metamodeling technique, then this should be

included as part of the process.

6.3.5 Combat Model Application

Last but not least, implement the entire methodology to existing Air Force models. The

original goal for application of the developed methodology was on real Air Force models,

but due to time and the inaccessibility of these models to outside users, this goal was not

realized. Instead, the application of the developed model aggregation methodology was

applied to real-world military simulation models in the area of flying training and the

current Air Force aircraft sortie generation process.

6.4 Conclusion

This research presented a logical and effective solution methodology for evaluating and

conducting aggregation of large hierarchical simulation models with applications to real

world models to clearly demonstrate the approach and its benefits to the overall

simulation goals. Often aggregation is viewed and implemented through a logical

grouping of entities within a simulation (perhaps based on physical considerations of the

systems being modeled). Our approach takes a broader and more objective (using a

mathematical framework) view of the entire logical structure of a simulation and specific

processes modeled in formalizing procedures to more appropriately and accurately

capture information for aggregation. This approach better defines the issues and

challenges involved with the exchange of information between simulation models at

different hierarchical levels. Our novel use of sophisticated metamodeling techniques in

 184

conjunction with our well defined structural and logical aggregation (or decomposition)

lays the foundation for eventually replacing very large aggregated models with a series of

interconnected metamodels, capable of providing decision makers with accurate system

performance results in a fraction of the time used with original simulation.

 185

Bibliography

Air Force Instruction (AFI) 16-1002 (2000). Modeling and Simulation (M&S) Support to

Acquisition, 1 June 2000.

Air Force Instruction (AFI) 16-1003 (2006). Air Force Standard Analysis Toolkit

(AFSAT), 17 February 2006.

Alam, F. M., K. R. McNaught, and T. J. Ringrose, (2004). “A comparison of

experimental designs in the development of a neural network simulation
metamodel” Simulation Modelling Practice and Theory, 12, pp. 559-578.

Allen, T. and M. Bernshteyn, (2003). “Supersatured designs that maximize the
 probability of identifying active factors” Technometrics, 45(1), pp. 1-8.

Amiri, M., H. Davande, A. Sadeghian, and S. Ali Seyyedsalehi, (2007). “Auto-

associative neural network based on new hybrid model of SFNN and GRNN”
Proceedings of International Joint Conference on Neural Networks. Orlando, FL.

Axtell, R. L., (1992). "Theory of Model Aggregation for Dynamical Systems with
 Application to Problems of Global Change." Ph.D. Dissertation. Carnegie-
 Mellon University.

Barton, R., (1992). “Metamodels for Simulation Input-Output Relations” In
 Proceedings of the 1992 Winter Simulation Conference, J.J. Swain, D. Goldsman,
 R.C. Crain, and J.R. Wilson (Eds), pp. 289-299.

Barton, R., (1994). “Metamodeling: A State of the Art Review,” In Proceedings of the
 1994 Winter Simulation Conference, J. D. Tew, S. Manivannan, D. A.
 Sadowski, and A. F. Seila (Eds), Institute of Electrical and Electronics
 Engineering, San Francisco, California, pp. 237-244.

Bauer, K. Jr., B. Kochar, and J. Talavage, (1985). “Simulation Model Decomposition by

Factor Analysis” In Proceedings of the 1985 Winter Simulation Conference, D.
Gantz, G. Blais, and S. Solomon (Eds), pp. 185-188.

Bauer, K. Jr., B. Kochar, and J. Talavage, (1991). “Discrete Event Simulation Model

Decomposition by Principal Component Analysis” ORSA Journal on Computing,
3(1), pp. 23-32.

Bauer, K. W. Jr. and J. R. Wilson, (1993). “Standardized routing variables: A new class

of control variates” Journal of Statistical Computation and Simulation, 46, pp. 69-
78.

 186

Bauer, K. W. Jr., S. G. Alsing, K.A. Greene, (2000). “Feature Screening Using Signal-to-
 Noise Ratios” Neurocomputing, 31(1), Mar 2000, pp. 29-44(16).

Bednar, E., (2005). “Feasibility Study of Variance Reduction in the Thunder Campaign-

Level Model” M.S. Thesis. Air Force Institute of Technology, Wright-Patterson
AFB, OH, pp. 2.11-2.16.

Belue, L. M., (1992). “Multilayer Perceptrons for Classification” Masters thesis,

AFIT/GOR/ENS/92M-02 Air Force Institute of Technology, Wright-Patterson
AFB OH, Mar 1992.

Benjamin, P., M. Erraguntla, D. Delen, R. Mayer, (1998). “Simulation Modeling at
 Multiple Levels of Abstraction” In Proceedings of the 1998 Winter Simulation
 Conference, D.J. Medeiros, E.F. Watson, J.S. Carson, and M.S. Manivannan
 (Eds), pp. 391-398.

Bettonvil, B. and J. Kleijnen, (1996). “Searching for important factors in simulation
 models with many factors: Sequential bifurcation” European Journal of
 Operational Research, 96, pp. 180-194.

Bishop, C. M., (1995). Neural Networks for Pattern Recognition, Oxford University
 Press, Walton Street, Oxford.

Carpenter, G. A. and S. Grossberg, (1987a). “A Massively Parallel Architecture for a

Self-Organizing Neural Pattern Recognition Machine” Computer Vision,
Graphics and Image Processing, 37: pp. 54-115.

Carpenter, G. A. and S. Grossberg, (1987b). “ART 2: Self-organization of stable

category recognition codes for analog input patterns” Applied Optics, 26(23), pp.
4919-4930,
http://cns-web.bu.edu/Profiles/Grossberg/CarGro1987AppliedOptics.pdf

Carpenter, G. A. and S. Grossberg (Eds), (1991). Pattern Recognition by Self-Organizing

Neural Networks. MIT Press, Cambridge, MA, USA.

Casella, G. and R. Berger, (2002). Statistical Inference, 2nd Ed., Pacific Grove, CA,

Duxbury Press.

Cassandras, C. G., C. G. Panayiotou, G. Diehl, W.-B. Gong, Z. Liu and C. Zou, (2000).
 “Clustering Methods for Multi-Resolution Simulation Modeling” In
 Proceedings of SPIE's 14th Annual International Symposium on
 Aerospace/Defense Sensing, Simulation, and Control, 4026: pp. 37-48, Orlando,
 FL, Apr 24-28, 2000.

http://www.ingentaconnect.com/content/els/09252312�
http://cns-web.bu.edu/Profiles/Grossberg/CarGro1987AppliedOptics.pdf�

 187

Davis, P. K. et al., (1997). Technology for the United States Navy and Marine Corps,
 2000-2035, Becoming a 21st - Century Force, 9, Modeling and Simulation,
 National Academy Press, Washington D.C.

Department of Defense, (1995). Department of Defense Modeling and Simulation(M&S)

Master Plan. DoD Directive 5000.59-P. Washington: GPO, Oct 1995.

Devijver, P. A. and J. Kittler, (1982). Pattern Recognition: A Statistical Approach,
 Prentice Hall, Englewood Cliffs, London.

Dillon, W. and M. Goldstein, (1984). Multivariate Analysis: Methods and Applications,

Wiley, New York.

Donohue, J. M., (1995). “The Use of Variance Reduction Techniques in the Estimation

of Simulation Metamodels” In Proceedings of 27th Conference on Winter
Simulation (Arlington, VA, United States, December 1995). Alexopoulos, C.,
Kang, K., Lilegdon, W. R., and Goldsman, D. (Eds), pp. 194-200.

Draper, N. R. and H. Smith, (1998). Applied Regression Analysis, 3rd Ed., Wiley, New York.

Duda, R. O., P. E. Hart, and D. G. Stork, (2001). Pattern Classification, John Wiley & Sons,

Inc., New York.

Faas, P., (2003). “Simulation of Autonomic Logistics System (ALS) sortie generation”

Masters thesis, AFIT/GOR/ENS/03M-07 Air Force Institute of Technology,
Wright-Patterson AFB OH, Mar 2003.

Faas, P. and J. O. Miller, (2003). “Impact of an Autonomic Logistics System (ALS) on the

Sortie Generation Process” In Proceedings of the 2003 Winter Simulation
Conference, S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice (Eds), pp. 1021-
1025.

Fishman, G., (1974). “Correlated simulation experiments” Simulation, 23(6), pp. 177-180.

Fonseca, D.J., D.O. Navaresse, and G.P. Moynihan, (2003). “Simulation metamodeling

through artificial neural networks” Engineering Applications of AI, 16(3), pp. 177-
183.

Frantz, K. F., (1995). “A taxonomy of model abstraction techniques” In Proceedings of
 the 1995 Winter Simulation Conference, Alexopoulos, C., Kang, K., Lilegdon, W.
 R., and Goldsman, D. (Eds), pp. 1413-1420.

Frantz, K. F. and A. J. Ellor, (1996). “Model Abstraction Techniques” Rome Laboratory
 Technical Report. RL-TR-96-87, Air Force Research Laboratory.

 188

Gilmour, S., (2006). “Factor screening via supersaturated designs” In Screening:
Methods of Experimentation in Industry, Drug Discovery, and Genetics. Chap. 8,
pp. 169-190.

Girosi, F. and T. Poggio, (1990). “Networks and the best approximation property”

Biological Cybernetics, 63, pp. 169-176.

Gordon, S. C., J. A. Ausink, and R. J. Berdine, (1994). “Using experimental design
 techniques for space craft control simulation” Simulation, 62, pp. 303-309.

Guo, Y., X. Yin and W. Gong, (1998). “ART 2 neural network clustering for hierarchical
 simulation” Proc. SPIE Int. Soc. Opt. Eng. 3369: pp. 35-48.

Harman, H. H., (1967). Modern Factor Analysis, 2nd Ed. Chicago: University of Chicago

Press, pp. 293-313.

Hansen, J. and R. Meservy, (1996). “Learning experiments with genetic optimization of

a generalized regression neural network” Decision Support Systems, 19, pp. 317-
325.

Haykin, S., (1999). Neural Networks: A comprehensive foundation. Upper Saddle

River, N. J., Prentice Hall.

Holcomb, D., D. Montgomery and W. Carlyle, (2005). “The Use of Supersaturated
 Statistical Designs in Product Development (working paper)” Research in
 Engineering Design Journal.

Hornik, K., M. Stinchcombe, and H. White, (1989). “Multilayer Feedforward Networks

are Universaly Approximators” Neural Networks, 2, pp. 359-366.

Jackson, J. E., (1991). A User’s Guide to Principal Components. Wiley, New York.

Jorch, W. C., C. Haag, I. Chou, and B. Preiss, (2001). “DeLoRes Variable Resolution
 Modeling Implementation” Proc. SPIE Int. Soc. Opt. Eng., 4367: pp. 93-103.

Kaiser, H. F., (1958). “The varimax criterion for analytic rotation in factor analysis”

Psychometrika, 23(3), pp. 187-200.

Kaiser, H. F., (1960). “The application of electronic computers to factor analysis”

Educational and Psychological Measurement, 20(1), pp. 141-151.

Kilmer, R. A., (1994). “Artificial Neural Network Metamodels of Stochastic Computer
 Simulations” Ph.D. Dissertation. Department of Industrial Engineering,
 University of Pittsburgh, Pittsburgh, PA, USA.

http://www.fulton.asu.edu/~ie/research/workingpaper/pdf/Supersaturated Designs Holcomb and Montgomery August 2005.pdf�
http://www.fulton.asu.edu/~ie/research/workingpaper/pdf/Supersaturated Designs Holcomb and Montgomery August 2005.pdf�

 189

Kilmer, R. A., (1996). “Applications of Artificial Neural Networks to Combat
 Simulations” Mathematical and Computer Modelling, 23, pp. 91-99.

Kilmer, R. A., A. E. Smith, and L. J. Shuman, (1997). “An Emergency Department

Simulation and a Neural Network Metamodel” Journal of the Society for Health
Systems, 5, pp. 63-79.

Kleijnen, J. P. C., (1977). “Design and Analysis of Simulations: Practical statistical
 techniques” Simulation, 29, pp. 81-90.

Kleijnen, J. P. C., (1987). Statistical Tools for Simulation Practitioners. Marcel Dekker,
 Inc., New York, NY, USA.

Kleijnen, J. P. C., (1996). “Five-stage Procedure for the Evaluation of Simulation

Models Through Statistical Techniques” In Proceedings of the 1996 Winter
Simulation Conference, J.M. Charnes, D.J. Morrice, D.T. Bruner, and J.J. Swain
(Eds), pp. 248-254.

Kleijnen, J. P. C., B. Bettonvil and F. Persson, (2003). “Finding the Important Factors in
 Large Discrete-Event Simulation: Sequential Bifurcation and its Applications”
 CentER Discussion Paper No. 2003-104.

Law, A., (2006). Simulation Modeling and Analysis, 4th Ed., New York: McGraw-Hill.

Law, A. and W. Kelton, (1991). Simulation Modeling and Analysis, 2nd Ed., New York:
 McGraw-Hill.

Li, R. and D. Lin, (2003). “Analysis Methods for Supersaturated Design: Some
 Comparisons” Journal of Data Science, 1, pp. 347-351.

Looney, C., (1997). Pattern Recognition using Neural Networks: Theory and Algorithms

for Engineers and Scientists. New York: Oxford University Press.

Matlab (2007), Statistics Toolbox 7.4.0,1984-2007 The MathWorks, Inc.

Matthes, S., (1988). “Discrete Event Simulation Model Decomposition” Masters thesis,

AFIT/GOR/ENS/88M Air Force Institute of Technology, Wright-Patterson AFB
OH, Mar 1988.

Miller, J.O., K.W. Bauer, P. Faas, C. Pawling, and S. Sterling, (2007). “Multivariate

analysis of a simulated prognostics and health management system for military
aircraft maintenance” International Journal of Logistics: Research and
Applications, 10(1), pp. 1-10.

 190

Mauro, C., (1986). “Efficient Identification of Important Factors in Large Scale
 Simulations” In Proceedings of the 1986 Winter Simulation Conference, J.
 Wilson, J. Henriksen, and S. Roberts (Eds), pp. 296-305.

Melnyk, T., P. Gierszewski, C. Kitson, and L. Wojciechowski, (2006). “Identification of
 important parameters in large safety assessment system models” IHLRWM, Las
 Vegas, NV, pp. 1027-1033.

Merriam-Webster’s Online Dictionary. http://mw1.merriam-webster.com/dictionary,
 retrieved June 12, 2007.

Miller, J. O., (2006). Class power point slides, OPER 677, Modeling and Analysis of Air
 Operations. Department of Operations Research, Air Force Institute of
 Technology, Wright-Patterson AFB OH.

Miller, J. O., K. W. Bauer, P. Faas, C. Pawling, and S. Sterling, (2007). “Multivariate

analysis of a simulated prognostics and health management system for military
aircraft maintenance” International Journal of Logistics: Research and
Applications, 10(1), pp. 1-10.

Milton, J. S. and Arnold, J. C., (2003) Introduction to Probability and Statistics:
 Principles and Applications for Engineering and the Computing Sciences, 4th Ed.,
 McGraw-Hill Higher Education.

Nahas, E. P., M. A. Henson, D. E. Seborg, (1992). “Nonlinear internal model control

strategy for neural network models” Computers & Chemical Engineering, 16(12),
pp. 1039-1057.

Nasereddin, M. and M. Mollaghasemi, (1999). "The Development of a Methodology for

the Use of Neural Networks and Simulation Modeling in System Design"
Proceedings of the 1999 Winter Simulation Conference, December 1999,
Phoenix, AZ., pp. 537-542.

Nelson, B. L., (1987). “Variance reduction for simulation practitioners” In Proceedings
 of the 1987 Winter Simulation Conference, A. Thesen, H. Grant, and W. Kelton,
 (Eds.), pp. 43-51.

Nelson, B. L., (1990). “Control-variate remedies” Operations Research, 38, pp. 974-972.

Neuhaus, J. O. and C. Wrigley, (1954). “The quartimax method: An analytical approach

to orthogonal simple structure” British Journal of Statistical Psychology, 7(2), pp.
81-91.

http://mw1.merriam-webster.com/dictionary�

 191

Niu, D., H. Wang, and Z. Gu, (2005). “Short-term load forecasting using general
regression neural network” Proceedings of the Fourth International Conference
on Machine Learning and Cybernetics, pp. 4076-4082.

Oracle, (2006). Oracle OLAP Application Developer’s Guide, 10g Release 2 (10.2.0.3).
http://download-east.oracle.com/docs/cd/B19306_01/olap.102/b14349/aggregate.htm

Pachepsky, Y. A., A. K. Guber, M.T. Van Genuchten, T.J. Nicholson, R.E. Cady, J.
 Simunek, and M.G. Schaap, (2006). “Model Abstraction Techniques for Soil
 Water Flow and Transport” NUREG/CR-6884, Dec 1, 2006.
 http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6884/

Ruck, D. W., S. K. Rogers, and M. Kabrisky, (1990). “Feature Selection Using a
 Multilayer Perceptron” Journal of Neural Network Computing, 2(2), pp. 40-48.

Saltelli, A., T. Andres and T. Homma, (1993). “Sensitivity analysis of model output. An
 investigation of new techniques” Computational Statistics and Data Analysis,
 15, pp. 211-238.

Saltelli, A., T. Andres and T. Homma, (1995). “Sensitivity analysis of model output.
 Performance of the iterated fractional factorial design method” Computational
 Statistics and Data Analysis, 20, pp. 387-407.

Sanchez, S., H. Wan and T. Lucas, (2005). “A two-phase screening procedure for
 simulation experiments” In Proceedings of the 2005 Winter Simulation
 Conference, M. E. Kuhl, N.M. Steiger, F.B. Armstrong and J.A. Joines, (Eds),
 pp. 223-230.

Saunders, D. R., (1961). “The rationale for an “oblimax” method of transformation in

factor analysis” Psychometrika, 26(3), pp. 317-324.

Schalkoff, R. J., (1997). Artificial Neural Networks. New York: McGraw-Hill

Companies, Inc.

Schruben, L. and B. Margolin, (1978). “Pseudorandom number assignment in

statistically designed simulation and distribution sampling experiments” J. Amer.
Stat. Assoc., 73, pp. 504-525.

Shen, H. and H. Wan, (2005). “Controlled sequential factorial design for simulation

factor screening” In Proceedings of the 2005 Winter Simulation Conference, M.
E. Kuhl, N.M. Steiger, F.B. Armstrong and J.A. Joines (Eds), pp. 467-474.

Shin, M. and A. Goel, (2000). “Empirical Data Modeling in Software Engineering Using

Radial Basis Functions” IEEE Transactions on Software Engineering, 26(6), pp.
567-576.

http://download-east.oracle.com/docs/cd/B19306_01/olap.102/b14349/aggregate.htm�
http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6884/�

 192

Shin, M. and C. Park, (2000). “A Radial Basis Function Approach to Pattern
Recognition and Its Applications” ETRI Journal, 22(2), pp. 1-10.

Shin, M., R. Sargent, and A. Goel, (2002). “Gaussian Radial Basis Functions for

Simulation Metamodeling” In Proceedings of the 2002 Winter Simulation
Conference, E. Yucesan, C.-H Chen, J. L. Snowdon, and J. M. Charnes (Eds), pp.
483-488.

Sinclair, M. J., M. T. Musavi and M. Qiao, (1995). “Radial Basis Function Neural

Network as Predictive Process Control Model” ISCAS, 3, pp. 1948-1951.

Sisti, A., (1998). “Enabling Technologies for Simulation Science” IEEE Information
 Technology Conference, Syracuse, NY, USA, Sep 1-3, 1998, pp. 33-36.

Sisti, A. and S. Farr, (1996). “Modeling and Simulation Enabling Technologies for

Military Applications” In Proceedings of the 1996 Winter Simulation
Conference, J. M. Charnes, D.G. Morris, D.T. Brunner and J.J. Swain (Eds), pp.
877-883.

Sisti, A. and S. Farr, (1998). “Model Abstraction Techniques: An Intuitive Overview”

In Proceedings of SCSC ‘98.

Sisti, A., (2006). “Large-Scale Battlefield Simulation Using a Multi-Level Model
 Integration Methodology”
 http://www.if.afrl.af.mil/tech/papers/ModSim/NCTISim.html, retrieved Jan 2007.

Specht, D.F., (1991). “A general regression neural network” IEEE Transactions on

Neural Networks, 2(6), Nov 1991, pp. 568-576.

StatSoft, (2007). http://www.statsoft.com/textbook/glosr.html#Regression, retrieved

June 20, 2007.

Steppe, J. M. and K. W. Bauer, Jr., (1996). “Improved feature screening in feedforward
 neural networks” Neurocomputing, 13, 1 Sep 1996, pp. 47-58. DOI =
 http://dx.doi.org/10.1016/0925-2312(95)00100-X

Tew, J. and J. Wilson, (1994). “Estimating simulation metamodels using combined
 correlation-based variance reduction techniques” IIE Trans. 26(3), pp. 2-16.

Thurstone, L. L., (1947). Multiple-Factor Analysis: A Development and Expansion of The

Vectors of Mind. The University of Chicago Press, Chicago, IL, pp. 335.

http://www.if.afrl.af.mil/tech/papers/ModSim/NCTISim.html�
http://www.statsoft.com/textbook/glosr.html#Regression�
http://dx.doi.org/10.1016/0925-2312(95)00100-X�

 193

Trocine, L. and L. Malone, (2000). “Finding important independent variables through
 screening designs: a comparison of methods” In Proceedings of the 2000 Winter
 Simulation Conference, J. A. Joines, R.R. Barton, K. Kang and P.A. Fishwick
 (Eds), pp. 749-754.

Trocine, L. and L. Malone, (2001). “An overview of newer, advance screening methods
 for the initial phase in an experimental design” In Proceedings of the 2001 Winter
 Simulation Conference, B. A. Peters, J.S. Smith, D.J. Madeiros and M.W. Rohrer
 (Eds), pp. 169-178.

Van Lienden, B., (1998). “Spatial Complexity and Reservoir Optimization Model

Results” Masters Thesis. School of Civil and Environmental Engineering,
University of California, Davis.

Wackerly, D., W. Mendenhall, and R. Scheaffer, (1996). Mathematical Statistics with

Applications, 5th Ed., Duxbury Press, Boston, MA.

Wan, H., B. Ankenman and B. Nelson, (2003). “Controlled sequential bifurcation: A

new factor-screening method for discrete-event simulation” In Proceedings of the
2003 Winter Simulation Conference, S. Chick, P. Sanchez, and D. Morrice (Eds),
pp. 565-573.

West, D., (2001). Introduction to Graph Theory. 2nd Ed. Prentice-Hall, Upper Saddle

River, NJ.

Westfall, P., S. Young and D. Lin, (1998). “Forward selection error control in analysis of
 supersaturated designs” Statistica Sinica, 8, pp. 101-117.

Wilson, J. R., (1984). “Variance reduction in simulation” In Proceedings of the 1984

Winter Simulation Conference, S. Sheppard, U. Pooch, and D. Pegden (Eds), pp.
122-128.

Yang, W. and B. Nelson, (1991). “Using common random numbers and control variates

in multiple-comparison procedures” Oper. Res., 39(4), pp. 583-591.

Yang, W. and W. Liou, (1996). “Combining Antithetic Variates and Control Variates in

Simulation Experiments” ACM Transactions on Modeling and Computer
Simulation, 6(4), pp. 243-260.

Zeigler, B. P., (1976). Theory of Modeling and Simulation. Wiley, New York, NY.

Zeigler, B. P., T. G. Kim, and H. Praehofer, (2000). Theory of Modeling and Simulation,
 2nd Ed., New York, NY, Academic Press.

 194

Appendix A: (s, S) Inventory Toy Model Data and Code

Table A1 - Kilmer Input/Output Data [Kilmer, 1994, Table B2 and B3 combined]
s d k w C Var(C)

40 80 48 10.5 144.08 0.41
20 80 80 4 161.12 6.49
80 80 16 4 176.02 0.4
60 80 16 17 155.16 0.37
40 60 48 10.5 136.44 0.71
20 60 80 4 172.44 9.88
80 60 16 4 166.4 0.24
60 60 16 17 145.63 0.11
40 40 48 10.5 133.92 0.83
20 40 80 4 179.56 16.53
80 40 16 4 156.8 0.19
60 40 16 17 137.3 0.39
40 20 48 10.5 139.95 0.58
20 20 80 4 217.05 11.28
80 20 16 4 153.05 0.42
60 20 16 17 132.21 0.33
20 80 48 10.5 131.21 0.76
80 80 80 10 192.66 0.6
60 80 16 4 154.45 0.42
40 80 16 17 136.11 0.63
20 60 48 10.5 126.76 2.18
80 60 80 10 188.22 0.51
60 60 16 4 147.46 0.46
40 60 16 17 125.53 0.46
20 40 48 10.5 127.5 0.6
80 40 80 10 185.55 0.76
60 40 16 4 136.83 0.55
40 40 16 17 116.01 0.33
20 20 48 10.5 137.42 2.34
80 20 80 10 202.7 1.15
60 20 16 4 133.11 0.42
40 20 16 17 113.36 0.46
80 80 48 17 183.85 0.3
60 80 80 10 173.13 0.74
40 80 16 4 134.56 0.34
20 80 16 17 118.08 0.21
80 60 48 17 176.49 0.47
60 60 80 10 168.47 1.15
40 60 16 4 126.8 0.38
20 60 16 17 109.16 0.29
80 40 48 17 173.1 0.24
60 40 80 10 166.21 1.42
40 40 16 4 117.71 0.59
20 40 16 17 101.57 0.6
80 20 48 17 176.64 0.58
60 20 80 10 182.84 1.12
40 20 16 4 113.93 0.64
20 20 16 17 98.33 0.82
60 80 48 17 163.39 0.59
40 80 80 10 152.67 0.77
20 80 16 4 121.53 0.77
80 80 48 4 184.56 1.13
60 60 48 17 155.38 0.43
40 60 80 10 147.95 0.87
20 60 16 4 114.45 0.82
80 60 48 4 177.84 0.61
60 40 48 17 151.72 0.22

 195

40 40 80 10 147.71 0.51
20 40 16 4 109.74 0.85
80 40 48 4 172.53 0.21
60 20 48 17 155.53 1.2
40 20 80 10 164.42 1.9
20 20 16 4 109.11 0.53
80 20 48 4 177.01 1.09
40 80 48 17 143.02 0.49
20 80 80 10 144.85 1.09
80 80 16 10.5 175.65 0.12
60 80 48 4 162.82 0.92
40 60 48 17 138.02 0.5
20 60 80 10 142 0.6
80 60 16 10.5 165.68 0.38
60 60 48 4 158.23 0.44
40 40 48 17 133.02 1.07
20 40 80 10 148.23 1.25
80 40 16 10.5 157.32 0.37
60 40 48 4 152.67 0.74
40 20 48 17 137.39 0.63
20 20 80 10 171.12 2.78
80 20 16 10.5 152.07 0.36
60 20 48 4 157.41 0.62
20 80 48 17 129.17 0.34
80 80 80 17 192.38 0.66
60 80 16 10.5 155.44 0.23
40 80 48 4 145.87 0.86
20 60 48 17 123.34 0.77
80 60 80 17 188.43 0.45
60 60 16 10.5 145.88 0.32
40 60 48 4 138 0.87
20 40 48 17 120.96 1.18
80 40 80 17 187.53 1.28
60 40 16 10.5 136.74 0.44
40 40 48 4 136.7 0.57
20 20 48 17 130.56 1.51
80 20 80 17 200.96 2.68
60 20 16 10.51 131.56 0.52
40 20 48 4 140.05 1.09
80 80 80 4 192.63 0.62
60 80 80 17 172.85 0.83
40 80 16 10.5 134.57 0.42
20 80 48 4 140.69 2.13
80 60 80 4 187.24 0.59
60 60 80 17 168.32 0.56
40 60 16 10.5 126.04 0.38
20 60 48 4 144.18 4.82
80 40 80 4 187.47 0.63
60 40 80 17 166.24 1.51
40 40 16 10.5 118.93 0.34
20 40 48 4 146.06 5.82
80 20 80 4 202.05 2.94
60 20 80 17 181.98 1.15
40 20 16 10.5 114.34 0.34
20 20 48 4 161.18 2.38
60 80 80 4 172.22 0.75
40 80 80 17 154.21 0.21
20 80 16 10.5 118.02 0.36
80 80 48 10.5 183.8 0.3
60 60 80 4 167.13 0.73
40 60 80 17 148.96 1.16
20 60 16 10.5 109.12 0.64
80 60 48 10.5 177.27 0.58
60 40 80 4 168.6 0.98

 196

40 40 80 17 147.47 0.43
20 40 16 10.5 102.35 0.37
80 40 48 10.5 172.7 0.39
60 20 80 4 181.7 1.01
40 20 80 17 162.34 1.04
20 20 16 10.5 101.64 0.68
80 20 48 10.5 177.85 0.65
40 80 80 4 155.61 1
20 80 80 17 140.28 0.95
80 80 16 17 175.9 0.74
60 80 48 10.5 163.7 0.39
40 60 80 4 149.74 0.3
20 60 80 17 137.48 0.61
80 60 16 17 166.38 0.07
60 60 48 10.5 155.76 0.23
40 40 80 4 152.82 1.37
20 40 80 17 140.61 2.48
80 40 16 17 158.96 0.21
60 40 48 10.5 152.71 0.05
40 20 80 4 170.76 3.68
20 20 80 17 161.96 2.01
80 20 16 17 152.54 0.58
60 20 48 10.5 158.35 0.48
20 20 16 4 109.11 0.53
20 20 16 8 102.03 1.28
20 20 16 10.5 101.64 0.68
20 20 16 13 100.57 0.45
20 20 16 17 98.33 0.82
20 20 32 4 135.67 5.72
20 20 32 8 120.06 1.46
20 20 32 10.5 117.85 0.69
20 20 32 13 116.29 1.65
20 20 32 17 114.83 0.32
20 20 48 4 161.18 2.38
20 20 48 8 143.88 0.97
20 20 48 10.5 137.42 2.34
20 20 48 13 134.19 0.99
20 20 48 17 130.56 1.51
20 20 64 4 190.49 4.53
20 20 64 8 161.76 4.9
20 20 64 10.5 155.04 2.12
20 20 64 13 146.8 1.42
20 20 64 17 145.33 1.23
20 20 80 4 217.05 11.28
20 20 80 8 182.5 1.45
20 20 80 10.5 171.12 2.78
20 20 80 13 165.43 4.43
20 20 80 17 161.96 2.01
20 27 16 4 108.78 1.16
20 27 16 8 102.1 0.33
20 27 16 10.5 102.11 0.42
20 27 16 13 99.62 0.38
20 27 16 17 98.81 0.51
20 27 32 4 133.15 1.72
20 27 32 8 117.85 3.1
20 27 32 10.5 115.72 1.78
20 27 32 13 113.75 1.17
20 27 32 17 113.07 0.49
20 27 48 4 152.83 3.66
20 27 48 8 135.97 2.58
20 27 48 10.5 128.62 1.81
20 27 48 13 128.15 1.05
20 27 48 17 123.9 1.62
20 27 64 4 180.18 13.14

 197

20 27 64 8 152.35 2.21
20 27 64 10.5 145.36 2.28
20 27 64 13 141.12 1.21
20 27 64 17 137.42 1.46
20 27 80 4 198.59 6.53
20 27 80 8 168.14 3.26
20 27 80 10.5 159.46 3.47
20 27 80 13 155.27 3.96
20 27 80 17 150.9 1.64
20 33 16 4 110.01 0.93
20 33 16 8 102.63 0.73
20 33 16 10.5 101.41 0.42
20 33 16 13 99.44 0.62
20 33 16 17 100.16 0.15
20 33 32 4 129.14 2.44
20 33 32 8 118.17 0.94
20 33 32 10.5 115.48 0.86
20 33 32 13 113.71 0.89
20 33 32 17 109.99 1.06
20 33 48 4 153.27 7.62
20 33 48 8 133.04 2.89
20 33 48 10.5 127.58 1.1
20 33 48 13 127.8 1.89
20 33 48 17 122.74 1.06
20 33 64 4 165.32 9.36
20 33 64 8 144.82 1.43
20 33 64 10.5 141.84 1.07
20 33 64 13 133.5 1.05
20 33 64 17 134.07 1.61
20 33 80 4 192.03 11.37
20 33 80 8 161.04 3.23
20 33 80 10.5 157.69 6.07
20 33 80 13 152.09 1.56
20 33 80 17 144.29 2.62
20 40 16 4 109.74 0.85
20 40 16 8 104.76 0.63
20 40 16 10.5 102.35 0.37
20 40 16 13 102.74 0.22
20 40 16 17 101.57 0.6
20 40 32 4 126.23 1.28
20 40 32 8 117.04 1.74
20 40 32 10.5 114.53 0.74
20 40 32 13 114.29 1.42
20 40 48 4 146.06 5.82
20 40 32 17 111.26 0.41
20 40 48 8 128.27 1.95
20 40 48 10.5 127.51 0.6
20 40 48 13 123.36 2
20 40 48 17 120.96 1.18

 198

%%%
% Law and Kelton [1991] Inventory Data %
%%%
%Maj June Rodriguez - 08S PhD Dissertation
%AFIT/ENS
%Board Members: Dr. J.O. Miller, Dr. K. Bauer, LtCol R. Neher

% Feed Forward Neural Net %
%Kilmer inv4param1outAvgCost
%4 inputs (s,d,k,w), 1 output (avg cost)
%s: reorder pt, d: reorder qty, k: setup cost, w:k/u
%11 Apr 2007
clear
clc
close all
tic;
data = load ('Table_B2_B3.dat');
[r c]=size(data);
%data = load ('I:\My Documents\Research\Kilmer Dissertation\NN
Model\NEWFF_Code\Table_B2_B3.dat');
rand('twister',0); %rand(method,s) causes rand to use the generator...
 %determined by method, and initializes the state of that generator...
 %using the value of s. Method: 'twister', Use the Mersenne Twister...
 %algorithm by Nishimura and Matsumoto the default in MATLAB Versions...
 %7.4 and later). This method generates double-precision values in the...
 %closed interval [2^(-53), 1-2^(-53)],with a period of (2^19937-1)/2...
 % = 2.16e+6001. 'State' period = 2^1492 =1.37e+449. 'Seed' period...
 % = 2^31-2 = 2147483646.

%%
% DATA PREP %
%%
%Index for rnd is set to make sure the same data permutation is being used
load('I:\My Documents\Research\Kilmer Dissertation\NN
Model\NEWFF_Code\Code\randIndex.mat');
iter=100; %number of iterations
for k = 1:iter;
 k
 TrngData=data(rnd(k,71:234),:); %randomized trng data
 P_Trng = data(rnd(k,71:234),1:4); %randomized 70 perc for trng data
 T_Trng= data(rnd(k,71:234),5); %70 perc trng data target

 TestData=data(rnd(k,1:70),:); %randomized test data
 P_Test = data(rnd(k,1:70),1:4); %randomized 30 perc for test data
 T_Test = data(rnd(k,1:70),5);%30 perc test data target

 %Get size of data
 [r_trng c_trng]=size(P_Trng);
 m=r_trng; %number of trng exemplars
 [r_test c_test]=size(P_Test);
 n=r_test; %number of test exemplars
 %Normalize P_Trng
 P_Trng_min = min(P_Trng(:,1:4));
 P_Trng_max = max(P_Trng(:,1:4));
 a=0;
 b=1;
 for i = 1:164
 P_Trng_norm(i,:) = ((P_Trng(i,1:4)-...
 P_Trng_min)./(P_Trng_max-P_Trng_min))*(b-a)+ a;
 end
 %Normalize P_Test inputs using same min and max from trng data
 P_Test_min = P_Trng_min;
 P_Test_max = P_Trng_max;
 a=0;
 b=1;
 for i = 1:70
 P_Test_norm(i,:) = ((P_Test(i,1:4)-...
 P_Test_min)./(P_Test_max-P_Test_min))*(b-a)+ a;
 end

 199

 %%
 % Ready for training %
 % Create the Feed Forward net %
 %%

 net = newff([a b;a b;a b;a b],[5 5 1],{'tansig' 'tansig' 'purelin'});

 net.trainParam.epochs = 1000;
 net.trainParam.goal = 0.001;
 net.trainParam.show=NaN;
 net = train(net,P_Trng_norm',T_Trng');
 Y = sim(net,P_Trng_norm'); %predict trng data targets Y
 Y =Y';
 T = TrngData(:,5); %actual trng data targets T
 [Y T];
 Y_Test = sim(net,P_Test_norm'); %predict test data targets
 Y_Test = Y_Test';
 T_Test = TestData(:,5); %actual test data targets
 [Y_Test T_Test];

 %%
 % Error Measurements %
 %%
 %Mean Square Error for Trng Data
 MSE_Trng_AvgCost_4_1 (k) = (((Y(:,1)-T(:,1))'*(Y(:,1)-T(:,1))))/m;

 %Mean Square Error for Test Data
 MSE_Test_AvgCost_4_1 (k) = (((Y_Test(:,1)-T_Test(:,1))'*(Y_Test(:,1)-
 T_Test(:,1))))/n;

 %Mean Absolute Error for Trng Data
 MAE_Trng_AvgCost_4_1 (k) = sum(abs((Y(:,1)-T(:,1))))/m;

 %Mean Absolute Error for Test Data
 MAE_Test_AvgCost_4_1 (k) = sum(abs((Y_Test(:,1)-T_Test(:,1))))/n;

 %Max/Min Error for Trng Data
 MaxErr_Trng_AvgCost_4_1 (k) = max(abs((Y(:,1)-T(:,1))));
 MinErr_Trng_AvgCost_4_1 (k) = min(abs((Y(:,1)-T(:,1))));

 %Max/Min Error for Test Data
 MaxErr_Test_AvgCost_4_1 (k) = max(abs((Y_Test(:,1)-T_Test(:,1))));
 MinErr_Test_AvgCost_4_1 (k) = min(abs((Y_Test(:,1)-T_Test(:,1))));
end
MSE_Trng_AvgCost_4_1_mean=mean(MSE_Trng_AvgCost_4_1)
MSE_Test_AvgCost_4_1_mean=mean(MSE_Test_AvgCost_4_1)
MAE_Trng_AvgCost_4_1_mean=mean(MAE_Trng_AvgCost_4_1)
MAE_Test_AvgCost_4_1_mean=mean(MAE_Test_AvgCost_4_1)
MaxErr_Trng_AvgCost_4_1_mean=mean(MaxErr_Trng_AvgCost_4_1)
MinErr_Trng_AvgCost_4_1_mean=mean(MinErr_Trng_AvgCost_4_1)
MaxErr_Test_AvgCost_4_1_mean=mean(MaxErr_Test_AvgCost_4_1)
MinErr_Test_AvgCost_4_1_mean=mean(MinErr_Test_AvgCost_4_1)
save ('I:\My Documents\Research\Kilmer Dissertation\NN Model\NEWFF_Code\Data
Output\NEWFF_AvgCost_4_1.mat')
toc;
 %%
 % Plot Predicted vs. True %
 % for Test Data %
 %%
figure, plot(Y_Test(:,1),'b*:');
hold on, plot(T_Test(:,1),'rd:');
legend('Predicted','Target')
title('Predicted vs. True')
xlabel('Test Exemplars');
ylabel('Output - Avg Cost (Dollars)');

 200

% Radial Basis Function Neural Net %

%Kilmer inv4param1out
%4 inputs (s,d,k,w), 1 output (avg cost)
%s: reorder pt, d: reorder qty, k: setup cost, w:?
%6 Apr 2007
clear
clc
close all
data = load ('Table_B2_B3.dat');
[r c]=size(data);
%data = load ('I:\My Documents\Research\Kilmer Dissertation\NN
Model\RBF_Code\Code\Table_B2_B3.dat');
rand('twister',0); %rand(method,s) causes rand to use the generator...
 %determined by method, and initializes the state of that generator...
 %using the value of s. Method: 'twister', Use the Mersenne Twister...
 %algorithm by Nishimura and Matsumoto the default in MATLAB Versions...
 %7.4 and later). This method generates double-precision values in the...
 %closed interval [2^(-53), 1-2^(-53)],with a period of (2^19937-1)/2...
 % = 2.16e+6001. 'State' period = 2^1492 =1.37e+449. 'Seed' period...
 % = 2^31-2 = 2147483646.
%%
% DATA PREP %
%%
%Index for rnd is set to make sure the same data permutation is being used
load('I:\My Documents\Research\Kilmer Dissertation\NN
Model\RBF_Code\Code\randIndex.mat');

iter=100; %number of iterations
for k = 1:iter
 k
 TrngData=data(rnd(k,71:234),:); %randomized trng data
 P_Trng = data(rnd(k,71:234),1:4); %randomized 70 perc for trng data
 T_Trng= data(rnd(k,71:234),5); %70 perc trng data target

 TestData=data(rnd(k,1:70),:); %randomized test data
 P_Test = data(rnd(k,1:70),1:4); %randomized 30 perc for test data
 T_Test = data(rnd(k,1:70),5);%30 perc test data target

 %Get size of data
 [r_trng c_trng]=size(P_Trng);
 m=r_trng; %number of trng exemplars
 [r_test c_test]=size(P_Test);
 n=r_test; %number of test exemplars

 %Normalize inv4paramTrngData_P
 P_Trng_min = min(P_Trng(:,1:4));
 P_Trng_max = max(P_Trng(:,1:4));
 a=0;
 b=1;
 for i = 1:164
 P_Trng_norm(i,:) = ((P_Trng(i,1:4)-...
 P_Trng_min)./(P_Trng_max-P_Trng_min))*(b-a)+ a;
 end

 %Normalize inv4paramTestData inputs using same min and max from trng data
 P_Test_min = P_Trng_min;
 P_Test_max = P_Trng_max;
 a=0;
 b=1;
 for i = 1:70
 P_Test_norm(i,:) = ((P_Test(i,1:4)-...
 P_Test_min)./(P_Test_max-P_Test_min))*(b-a)+ a;
 end

 201

 %%
 % Ready for training %
 % Create the RB net %
 %%

 net=newrb(P_Trng_norm',T_Trng',0.001,1.0,1);
 Y = sim(net,P_Trng_norm'); %predict trng data outputs
 Y =Y';
 T = TrngData(:,5); %actual trng data targets
 [Y T];
 Y_Test = sim(net,P_Test_norm'); %predict test data targets
 Y_Test = Y_Test';
 T_Test = TestData(:,5); %actual test data targets
 [Y_Test T_Test];

 %%
 % Error Measurements %
 %%

 %Mean Square Error for Trng Data
 MSE_Trng_AvgCost_4_1 (k) = (((Y(:,1)-T(:,1))'*(Y(:,1)-T(:,1))))/m;

 %Mean Square Error for Test Data
 MSE_Test_AvgCost_4_1 (k) = (((Y_Test(:,1)-T_Test(:,1))'*(Y_Test(:,1)-
 T_Test(:,1))))/n;

 %Mean Absolute Error for Trng Data
 MAE_Trng_AvgCost_4_1 (k) = sum(abs((Y(:,1)-T(:,1))))/m;

 %Mean Absolute Error for Test Data
 MAE_Test_AvgCost_4_1 (k) = sum(abs((Y_Test(:,1)-T_Test(:,1))))/n;

 %Max/Min Error for Trng Data
 MaxErr_Trng_AvgCost_4_1 (k) = max(abs((Y(:,1)-T(:,1))));
 MinErr_Trng_AvgCost_4_1 (k) = min(abs((Y(:,1)-T(:,1))));

 %Max/Min Error for Test Data
 MaxErr_Test_AvgCost_4_1 (k) = max(abs((Y_Test(:,1)-T_Test(:,1))));
 MinErr_Test_AvgCost_4_1 (k) = min(abs((Y_Test(:,1)-T_Test(:,1))));

end
MSE_Trng_AvgCost_4_1_mean=mean(MSE_Trng_AvgCost_4_1)
MSE_Test_AvgCost_4_1_mean=mean(MSE_Test_AvgCost_4_1)
MAE_Trng_AvgCost_4_1_mean=mean(MAE_Trng_AvgCost_4_1)
MAE_Test_AvgCost_4_1_mean=mean(MAE_Test_AvgCost_4_1)
MaxErr_Trng_AvgCost_4_1_mean=mean(MaxErr_Trng_AvgCost_4_1)
MinErr_Trng_AvgCost_4_1_mean=mean(MinErr_Trng_AvgCost_4_1)
MaxErr_Test_AvgCost_4_1_mean=mean(MaxErr_Test_AvgCost_4_1)
MinErr_Test_AvgCost_4_1_mean=mean(MinErr_Test_AvgCost_4_1)
save ('I:\My Documents\Research\Kilmer Dissertation\NN Model\RBF_Code\Data
Output\RBF_AvgCost_4_1.mat')

 %%
 % Plot Predicted vs. True %
 % for Test Data %
 %%
figure, plot(Y_Test(:,1),'b*:');
hold on, plot(T_Test(:,1),'rd:');
legend('Predicted','Target')
title('Predicted vs. True')
xlabel('Test Exemplars');
ylabel('Output - Avg Cost (Dollars)');

 202

Appendix B: Flying Training Model Details

B1. APPROACH:

B1.1 Model Assumptions

a. General Assumptions

• Sorties greater than 99 minutes have ± 10 minutes standard deviation
• Sorties less than 99 minutes have ± 5 minutes standard deviation
• Aerial Refueling (AR) time to and from rendezvous point is 80 minutes
• Senior Officer Course (SOC) sorties are all during daytime and no reflies

are required
• Reflies have priority over new class flights
• Pilots fly in pairs, unless class has odd number of students; then single

pilots fly alone
• Fifteen-minute taxi-out and an additional fifteen-minute taxi-in incurred

before and after each sortie (not counted as flying hours), respectively
• All sorties require enough time left in day to accomplish mission
• Schoolhouse Flying Window: 0830-0230
• Training days = 246
• AR resource capacity not affected by C-17 Abeam tactical maneuvers
• In-house receivers have priority over non-in-house receivers for AR
• Weather (Wx) and C-17 low ceiling delay factors:

- C-17s do not take off with low ceiling and incur 2-4 hours delay using a

 Uniform distribution
- Wx delay will last ½ to 1 day using a Uniform distribution

Quarter and Type Factor
1 Qtr Severe Wx Delay 3.03%
2 Qtr Severe Wx Delay 3.73%
3 Qtr Severe Wx Delay 1.89%
4 Qtr Severe Wx Delay 0.74%
1 Qtr Low Ceiling Delay 5.59%
2 Qtr Low Ceiling Delay 9.33%
3 Qtr Low Ceiling Delay 1.64%
4 Qtr Low Ceiling Delay 0.92%

 203

• Maintenance (Mx) and other delay factors:

Aircraft Type Unscheduled Mx and Others
C-17 3.69%
C-5 11.82%
KC-135 3.17%

- Unscheduled maintenance delays last from ½ to 1 day with a Uniform

 distribution

b. C-17 Assumptions

• Staggered take-offs were calculated as follows: First available C-17 is
ready at 0830. Second available C-17 is ready 17 minutes (0847) into the
start of operations. Additional take-offs occur every 15 minutes up to the
total available aircraft for the day.

• During C-17 tactical training on the VFR runway, the following resource

capacity decreases occur:

- VFR = 2
- IFR & LL = 0

• Pilot types with corresponding proficiency refly factors and Graduate
Program Requirements Document (GPRD) entries:

Course Refly Factor Entries
ACAD 4.50% 40
CAD 4.50% 80
IAC 13.5% 114
AC 13.5% 154
PIQ 9.00% 392
ACIQ 12.5% 94
ACRQ 12.5% 18
SOC 0.00% 20
IP AD 0.00% 31
IP DDS 0.00% 85
IP TPS 0.00% 109

- C-17 refly factors reflected the most recent refly requirements. Rates

reflected are 50% higher than the program flying training (PFT) plan.

 204

• Sortie profiles

Course Sortie 1 Sortie 2 Sortie 3 Sortie 4 Sortie 5 Sortie 6 Sortie 7 Sortie 8 Sortie 9
ACAD LL/IFR LL/VFR LL/VFR AR/LL/VFR LL/VFR AR/LL/IFR
CAD LL/IFR LL/VFR LL/VFR AR/LL/VFR
IAC AR/VFR LL/IFR/VFR AR/VFR AR/VFR
AC AR/LL/VFR AR/LL/VFR AR/VFR AR/VFR AR/LL/VFR
PIQ LL/IFR/VFR LL/IFR/VFR LL/IFR/VFR
ACIQ VFR AR/VFR AR/VFR AR/LL/VFR AR/LL/VFR AR/VFR AR/VFR CS NVG AR/LL/VFR
ACRQ AR/LL/VFR AR/LL/VFR AR/VFR AR/VFR AR/CS NVG AR/LL/VFR
SOC LL/IFR/VFR LL/IFR/VFR
IP AD AD
IP DDS AR/IFR/VFR
IP TPS LL/IFR/VFR

c. C-5 Assumptions

• Pilot types with corresponding proficiency refly factors and GPRD entries:

Course Refly Factor Entries
AC 5.40% 8
ACAR 12.54% 12
ACIQ 6.62% 10
IAC 7.47% 12
SOC 0.00% 0
IP 0.00% 72

• Sortie profiles

Course Sortie 1 Sortie 2 Sortie 3 Sortie 4 Sortie 5 Sortie 6
AC IFR/VFR IFR/VFR IFR/VFR IFR/VFR IFR/VFR IFR/VFR
ACAR AR AR AR AR AR
ACIQ IFR/VFR IFR/VFR IFR/VFR IFR/VFR
IAC IFR/VFR IFR/VFR IFR/VFR IFR/VFR
SOC IFR/VFR
IP AR or IFR/VFR

d. KC-135 Assumptions

• Most evaluation sorties are flown during daylight hours
• IAC sorties are flown anytime
• AC, ACRQ, ACIQ, & PIQ sorties - first two sorties flown during daylight

hours, next two flown during nighttime hours, remaining sorties flown
anytime

• VFR and IFR pattern times doubled for all sorties, since sorties are usually

flown with two student pilots in the model

• Staggered take-offs are calculated as follows: First KC-135 ready 7
minutes (0837) into the start of operation. The 2nd to 5th aircraft becomes

 205

available in 15-minute intervals. The 6th to 10th aircraft becomes available
in 7.5-minute intervals.

• 25% of all sorties will fly off-station except for SOCs and IPs

• KC-135 refly factors are not incorporated in the model since these are

already considered into their allotted flying time delays.

• Pilot types and corresponding GPRD

Course Entries
ACRQ 34
AC 150
ACIQ 68
PIQ 206
IAC 92
SOC 30
IP 246

• Sortie profiles

Course Sortie 1 Sortie 2 Sortie 3 Sortie 4 Sortie 5 Sortie 6 Sortie 7 Sortie 8 Sortie 9 Sortie 10 Sortie 11
ACRQ AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR
AC AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR
ACIQ AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR
PIQ AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR
IAC AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR
SOC AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR
IP AR/IFR/VFR

e. Bird Aircraft Strike Hazard (BASH) and Day/Night time Assumptions

• BASH occurs Dec-Jan: 1700-1859 hours
• Daylight hours: 0830-1759 (non BASH months)
• Daylight hours: 0830-1659 (BASH months)
• Nighttime hours: 1800-0230 (non BASH months)
• Nighttime hours: 1700-0230 (BASH months)

f. Resource Capacity Assumptions

Resource Capacity
C-17 Fleet 8-6 (day-night)
C-5 Fleet 2-2 (day-night)
KC-135 Fleet 10-5 (day-night)
KC-135 Tanker AR Track 4
Receiver AR Track 4
Additional Tanker AR Track 4
LL Pattern Infinite
IFR Pattern 8
VFR Pattern 4

 206

B1.2 Limitation(s)

• Day and nighttime transition did not vary, as stated above in the
assumptions, except for BASH months

B1.3 Summary of Input

The ARENA model required input:

• Class size and representative arrival schedule, including instructor
proficiency (IP) continuation training

• Pattern (C-17 Abeam tactical, VFR, IFR, LL, and AR) process times
• Resource capacity

B1.4 Summary of Output (Measures of Performance)

The model computed the total time in training days (noted in the model as time in

system (TiS)) each pilot needed to complete the flying training portion of his or her

curriculum. The model averaged each pilot’s TiS over the course of one training year

(246 training days). The model output also included the number of pilot types graduating

from each course. The Graduate Program Requirements Document (GPRD) was

compared to the pilot graduates from the model while the model TiS was compared to the

class type allotted flying training days.

B2. VERIFICATION AND VALIDATION:

Verification determines whether a model performs as the developer intended. The

simulation was verified by tracking individual entities through several key points in the

system. The animation option in ARENA facilitated the verification process by allowing

visual observation of proper model behavior. All assumptions were tested to verify

proper coding in the model.

Validation is the process of determining if the model adequately represents the

‘real world’, guided by the intended uses of the model. Two methods of validation were

performed for the flying training model. The projected flying hours for the flying

training were compared to the allotted TiS in the Programmed Flying Training (PFT)

plan. This comparison showed the TiS from the simulation is comparable to the PFT and

remains a valid representation of reality. The second method of validation was conducted

 207

by several pilot instructors as the subject matter experts (SMEs). These SMEs examined

the flying training sequences as modeled, compared the results to the actual flying

training conducted, and found it to be very closely representative of reality.

 208

Appendix C: Flying Training Model Data and Code

Table C1 - FTM M1 and M2 Input Data

Scenario YA1_mean YA1 _se YA2_mean YA2_se YA3_mean YA3_se YB1_mean YB1 _se YB2_mean YB2_se YB3_mean YB3_se

1 6.1557 0.0462 12.6808 0.0316 6.4191 0.0266 23.4135 0.2508 12.1284 0.3654 8.7201 0.0232

2 6.2384 0.0462 14.0754 0.0632 7.7006 0.0537 23.4137 0.2507 11.5657 0.3356 8.8590 0.0267

3 5.9263 0.0403 12.9446 0.0424 6.6951 0.0384 23.4135 0.2508 11.2771 0.3188 8.7220 0.0228

4 5.9783 0.0416 13.0248 0.0425 6.7397 0.0398 18.4696 0.2581 11.3111 0.2501 9.3567 0.0303

5 6.1908 0.0461 14.3263 0.0684 7.4432 0.0573 23.4135 0.2508 11.2771 0.3188 8.7220 0.0228

6 6.1166 0.0476 12.7761 0.0370 6.6835 0.0342 18.4694 0.2581 11.1843 0.2259 9.5007 0.0338

7 6.1908 0.0461 14.1991 0.0675 7.8308 0.0560 25.9585 0.2706 33.3538 0.9757 9.4426 0.0303

8 6.2384 0.0462 13.9236 0.0568 7.3231 0.0474 25.9578 0.2707 34.4337 1.0436 9.2907 0.0278

9 5.9263 0.0403 12.7601 0.0357 6.6725 0.0352 30.8988 0.2917 26.9670 0.9839 8.7166 0.0245

10 6.1908 0.0461 14.0097 0.0583 7.3910 0.0497 30.9002 0.2918 28.0356 1.0086 8.7099 0.0249

11 6.1166 0.0476 12.9300 0.0412 6.6998 0.0351 25.9578 0.2707 34.4337 1.0436 9.2907 0.0278

12 5.9263 0.0403 12.8345 0.0408 6.4323 0.0333 23.4135 0.2508 12.1284 0.3654 8.7201 0.0232

13 5.9637 0.0491 14.4040 0.0737 7.7715 0.0595 30.9047 0.2914 27.8947 1.0666 8.8496 0.0257

14 5.9263 0.0403 12.6627 0.0355 6.4138 0.0308 23.4137 0.2507 12.1430 0.3515 8.8525 0.0258

15 6.1557 0.0462 12.8481 0.0365 6.4306 0.0293 23.4137 0.2507 11.5657 0.3356 8.8590 0.0267

16 6.1557 0.0462 12.8029 0.0327 6.6972 0.0302 30.9028 0.2913 28.5075 1.0995 8.8547 0.0263

17 6.1908 0.0461 14.5605 0.0782 7.9131 0.0642 18.4694 0.2581 11.1843 0.2259 9.5007 0.0338

18 6.0188 0.0487 14.1789 0.0635 7.4681 0.0510 18.4694 0.2581 10.7031 0.2348 9.5034 0.0339

19 6.1166 0.0476 12.6638 0.0338 6.4198 0.0310 30.9047 0.2914 27.8947 1.0666 8.8496 0.0257

20 5.9637 0.0491 14.2908 0.0748 7.4114 0.0630 18.4696 0.2581 11.3111 0.2501 9.3567 0.0303

21 5.9637 0.0491 13.9996 0.0622 7.3702 0.0544 18.4696 0.2581 10.8002 0.2483 9.3608 0.0300

22 6.1166 0.0476 12.8302 0.0383 6.4316 0.0319 25.9585 0.2706 33.3538 0.9757 9.4426 0.0303

23 6.0188 0.0487 14.4808 0.0744 7.5455 0.0639 30.9028 0.2913 28.5075 1.0995 8.8547 0.0263

24 5.9783 0.0416 12.7151 0.0335 6.4500 0.0333 18.4694 0.2581 10.7031 0.2348 9.5034 0.0339

25 5.9783 0.0416 12.8308 0.0364 6.6975 0.0359 30.8988 0.2917 26.9670 0.9839 8.7166 0.0245

26 5.9783 0.0416 12.8936 0.0400 6.4673 0.0355 25.9578 0.2707 33.4865 1.0396 9.2856 0.0280

27 6.0188 0.0487 14.3430 0.0699 7.9071 0.0604 25.9585 0.2706 33.9312 1.0540 9.4371 0.0308

28 6.2384 0.0462 14.3517 0.0736 7.7212 0.0547 30.9002 0.2918 28.0356 1.0086 8.7099 0.0249

29 6.2384 0.0462 14.1947 0.0649 7.3413 0.0484 25.9585 0.2706 33.9312 1.0540 9.4371 0.0308

30 6.1557 0.0462 12.9734 0.0380 6.7067 0.0314 18.4696 0.2581 10.8002 0.2483 9.3608 0.0300

31 5.9637 0.0491 14.1089 0.0620 7.7432 0.0536 23.4137 0.2507 12.1430 0.3515 8.8525 0.0258

32 6.0188 0.0487 14.6932 0.0830 8.0567 0.0885 25.9578 0.2707 33.4865 1.0396 9.2856 0.0280

 209

Table C2 - FTM M3 and M4 Input Data

Scenario YA1_mean YA1 _se YA2_mean YA2_se YA3_mean YA3_se YB1_mean YB1 _se YB2_mean YB2_se YB3_mean YB3_se

1 6.1688 0.0319 12.9598 0.0946 6.6167 0.0516 25.9414 1.1908 12.0367 0.3582 9.1777 0.1605

2 5.7931 0.1040 13.7454 0.0921 7.4438 0.1014 27.1828 1.0416 11.6694 0.3129 9.2129 0.1730

3 5.8107 0.1160 12.2405 0.1771 6.2656 0.1277 27.8492 1.4748 6.9670 1.5784 8.7341 0.0219

4 6.0430 0.1118 13.0299 0.0373 6.7922 0.0357 9.7486 1.8466 8.8165 1.4247 9.5994 0.0815

5 6.5371 0.1118 12.8953 0.3032 7.0397 0.1810 27.8492 1.4748 6.9670 1.5784 8.7341 0.0219

6 5.5423 0.1337 12.3830 0.1132 7.1719 0.1207 8.5057 1.9503 6.9195 1.3087 9.5723 0.1062

7 5.9877 0.1030 13.6906 0.1829 7.9023 0.0495 23.8390 1.4056 19.3439 1.9034 9.4619 0.0285

8 6.1279 0.0484 13.1918 0.2011 7.2591 0.1633 22.6695 1.3697 14.5712 5.6307 9.6486 0.1239

9 5.9772 0.1163 12.4706 0.1092 6.5079 0.0563 34.5554 1.0409 22.8290 2.7062 8.7144 0.0239

10 6.1849 0.0297 14.0184 0.0552 7.1120 0.1476 32.1382 1.8045 20.6614 2.3895 8.6816 0.0277

11 6.0424 0.0796 12.6450 0.1031 6.8391 0.0527 22.6695 1.3697 14.5712 5.6307 9.6486 0.1239

12 5.9945 0.0512 12.3636 0.1469 5.9680 0.1210 25.9414 1.1908 12.0367 0.3582 9.1777 0.1605

13 5.9908 0.0330 13.6461 0.1976 6.8775 0.1823 37.6617 1.2535 6.5071 5.2755 9.1126 0.1573

14 5.9006 0.1306 12.0954 0.1493 6.1520 0.1049 28.3192 1.0587 12.3273 0.2999 9.2576 0.1659

15 6.1678 0.0312 13.2700 0.1048 6.3449 0.0389 27.1828 1.0416 11.6694 0.3129 9.2129 0.1730

16 6.1571 0.0343 12.4066 0.1226 6.6983 0.0258 37.2627 1.1660 22.9842 3.2063 9.0409 0.1986

17 5.9046 0.1619 13.8179 0.2177 7.5553 0.1596 8.5057 1.9503 6.9195 1.3087 9.5723 0.1062

18 6.1331 0.0579 13.7340 0.1032 6.9409 0.1630 8.4195 1.7912 10.7005 0.2122 9.7411 0.0918

19 6.0932 0.0341 12.6871 0.0298 5.9999 0.1081 37.6617 1.2535 6.5071 5.2755 9.1126 0.1573

20 6.0004 0.1593 12.5615 0.2999 6.7142 0.2069 9.7486 1.8466 8.8165 1.4247 9.5994 0.0815

21 5.9904 0.1415 12.5357 0.2352 6.1513 0.2061 9.7993 1.8961 5.0097 1.7744 9.5305 0.0785

22 6.3171 0.1053 12.0285 0.1961 5.8587 0.1469 23.8390 1.4056 19.3439 1.9034 9.4619 0.0285

23 6.0329 0.0378 14.0277 0.1132 6.7975 0.2114 37.2627 1.1660 22.9842 3.2063 9.0409 0.1986

24 6.0923 0.1259 12.7524 0.0319 6.8659 0.0957 8.4195 1.7912 10.7005 0.2122 9.7411 0.0918

25 6.1928 0.1109 12.6572 0.0909 6.6959 0.0320 34.5554 1.0409 22.8290 2.7062 8.7144 0.0239

26 6.3356 0.1052 12.8945 0.0372 6.5363 0.0305 20.7128 1.3731 23.0700 4.2829 9.6827 0.1386

27 6.0397 0.0376 13.4955 0.1973 7.7209 0.0990 23.8637 1.5165 2.8006 5.9014 9.4504 0.0282

28 5.8725 0.1104 13.6806 0.2404 7.3720 0.1792 32.1382 1.8045 20.6614 2.3895 8.6816 0.0277

29 5.7740 0.1101 13.7861 0.1021 6.9922 0.2019 23.8637 1.5165 2.8006 5.9014 9.4504 0.0282

30 6.5145 0.1145 12.7785 0.1641 6.9370 0.0901 9.7993 1.8961 5.0097 1.7744 9.5305 0.0785

31 5.9785 0.0344 12.3381 0.2692 6.1082 0.2690 28.3192 1.0587 12.3273 0.2999 9.2576 0.1659

32 6.0263 0.0379 14.1405 0.1654 7.9448 0.2385 20.7128 1.3731 23.0700 4.2829 9.6827 0.1386

 210

Table C3 - FTM M5 Input Data

Scenario YA1 YA2 YA3 YB1 YB2 YB3

1 (4+11*BETA(1.25,5.11)) (9+21*BETA(1.25,5.11)) (4+8.94*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+80*BETA(1.25,5.11)) (6+19*BETA(1.25,5.11))

2 (4+9*BETA(1.25,5.11)) (9+25*BETA(1.25,5.11)) (4+16*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+73*BETA(1.25,5.11)) (6+65*BETA(1.25,5.11))

3 (4+7*BETA(1.25,5.11)) (9+21*BETA(1.25,5.11)) (4+13*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+82*BETA(1.25,5.11)) (6+19*BETA(1.25,5.11))

4 (4+7*BETA(1.25,5.11)) (9+23*BETA(1.25,5.11)) (4+12*BETA(1.25,5.11)) (3+55*BETA(1.25,5.11)) (1+81*BETA(1.25,5.11)) (6+19*BETA(1.25,5.11))

5 (4+9*BETA(1.25,5.11)) (9+23*BETA(1.25,5.11)) (4+17*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+82*BETA(1.25,5.11)) (6+19*BETA(1.25,5.11))

6 (4+11*BETA(1.25,5.11)) (9+19*BETA(1.25,5.11)) (4+9*BETA(1.25,5.11)) (3+55*BETA(1.25,5.11)) (1+81*BETA(1.25,5.11)) (6+18*BETA(1.25,5.11))

7 (4+9*BETA(1.25,5.11)) (9+27*BETA(1.25,5.11)) (4+17*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+154*BETA(1.25,5.11)) (6+11*BETA(1.25,5.11))

8 (4+9*BETA(1.25,5.11)) (9+23*BETA(1.25,5.11)) (4+12*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+169*BETA(1.25,5.11)) (6+23*BETA(1.25,5.11))

9 (4+7*BETA(1.25,5.11)) (9+21*BETA(1.25,5.11)) (4+9*BETA(1.25,5.11)) (3+72*BETA(1.25,5.11)) (1+172*BETA(1.25,5.11)) (6+19*BETA(1.25,5.11))

10 (4+9*BETA(1.25,5.11)) (9+22*BETA(1.25,5.11)) (4+18*BETA(1.25,5.11)) (3+72*BETA(1.25,5.11)) (1+173*BETA(1.25,5.11)) (6+11*BETA(1.25,5.11))

11 (4+11*BETA(1.25,5.11)) (9+20*BETA(1.25,5.11)) (4+9*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+169*BETA(1.25,5.11)) (6+23*BETA(1.25,5.11))

12 (4+7*BETA(1.25,5.11)) (9+19*BETA(1.25,5.11)) (4+10*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+80*BETA(1.25,5.11)) (6+19*BETA(1.25,5.11))

13 (4+8*BETA(1.25,5.11)) (9+25*BETA(1.25,5.11)) (4+19*BETA(1.25,5.11)) (3+72*BETA(1.25,5.11)) (1+174*BETA(1.25,5.11)) (6+11*BETA(1.25,5.11))

14 (4+7*BETA(1.25,5.11)) (9+19*BETA(1.25,5.11)) (4+9*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+91*BETA(1.25,5.11)) (6+61*BETA(1.25,5.11))

15 (4+11*BETA(1.25,5.11)) (9+21*BETA(1.25,5.11)) (4+9*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+73*BETA(1.25,5.11)) (6+65*BETA(1.25,5.11))

16 (4+11*BETA(1.25,5.11)) (9+22*BETA(1.25,5.11)) (4+9*BETA(1.25,5.11)) (3+72*BETA(1.25,5.11)) (1+173*BETA(1.25,5.11)) (6+25*BETA(1.25,5.11))

17 (4+9*BETA(1.25,5.11)) (9+27*BETA(1.25,5.11)) (4+20*BETA(1.25,5.11)) (3+55*BETA(1.25,5.11)) (1+81*BETA(1.25,5.11)) (6+18*BETA(1.25,5.11))

18 (4+8*BETA(1.25,5.11)) (9+26*BETA(1.25,5.11)) (4+17*BETA(1.25,5.11)) (3+55*BETA(1.25,5.11)) (1+81*BETA(1.25,5.11)) (6+19*BETA(1.25,5.11))

19 (4+11*BETA(1.25,5.11)) (9+21*BETA(1.25,5.11)) (4+10*BETA(1.25,5.11)) (3+72*BETA(1.25,5.11)) (1+174*BETA(1.25,5.11)) (6+11*BETA(1.25,5.11))

20 (4+8*BETA(1.25,5.11)) (9+25*BETA(1.25,5.11)) (4+29*BETA(1.25,5.11)) (3+55*BETA(1.25,5.11)) (1+81*BETA(1.25,5.11)) (6+19*BETA(1.25,5.11))

21 (4+8*BETA(1.25,5.11)) (9+25*BETA(1.25,5.11)) (4+24*BETA(1.25,5.11)) (3+55*BETA(1.25,5.11)) (1+81*BETA(1.25,5.11)) (6+19*BETA(1.25,5.11))

22 (4+11*BETA(1.25,5.11)) (9+21*BETA(1.25,5.11)) (4+10*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+154*BETA(1.25,5.11)) (6+11*BETA(1.25,5.11))

23 (4+8*BETA(1.25,5.11)) (9+25*BETA(1.25,5.11)) (4+19*BETA(1.25,5.11)) (3+72*BETA(1.25,5.11)) (1+173*BETA(1.25,5.11)) (6+25*BETA(1.25,5.11))

24 (4+7*BETA(1.25,5.11)) (9+20*BETA(1.25,5.11)) (4+8*BETA(1.25,5.11)) (3+55*BETA(1.25,5.11)) (1+81*BETA(1.25,5.11)) (6+19*BETA(1.25,5.11))

25 (4+7*BETA(1.25,5.11)) (9+20*BETA(1.25,5.11)) (4+8.9*BETA(1.25,5.11)) (3+72*BETA(1.25,5.11)) (1+172*BETA(1.25,5.11)) (6+19*BETA(1.25,5.11))

26 (4+7*BETA(1.25,5.11)) (9+23*BETA(1.25,5.11)) (4+10*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+182*BETA(1.25,5.11)) (6+24*BETA(1.25,5.11))

27 (4+8*BETA(1.25,5.11)) (9+25*BETA(1.25,5.11)) (4+25*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+169*BETA(1.25,5.11)) (6+11*BETA(1.25,5.11))

28 (4+9*BETA(1.25,5.11)) (9+28*BETA(1.25,5.11)) (4+18*BETA(1.25,5.11)) (3+72*BETA(1.25,5.11)) (1+173*BETA(1.25,5.11)) (6+11*BETA(1.25,5.11))

29 (4+9*BETA(1.25,5.11)) (9+22*BETA(1.25,5.11)) (4+15*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+169*BETA(1.25,5.11)) (6+11*BETA(1.25,5.11))

30 (4+11*BETA(1.25,5.11)) (9+22*BETA(1.25,5.11)) (4+9*BETA(1.25,5.11)) (3+55*BETA(1.25,5.11)) (1+81*BETA(1.25,5.11)) (6+19*BETA(1.25,5.11))

31 (4+8*BETA(1.25,5.11)) (9+25*BETA(1.25,5.11)) (4+19*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+91*BETA(1.25,5.11)) (6+61*BETA(1.25,5.11))

32 (4+8*BETA(1.25,5.11)) (9+25*BETA(1.25,5.11)) (4+27*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+182*BETA(1.25,5.11)) (6+24*BETA(1.25,5.11))

 211

Table C4 - FTM M6 (Regression) Input Data

Scenario YA1 YA2 YA3 YB1 YB2 YB3

1 6.1682 12.6273 6.3018 23.2866 10.1925 8.7431

2 6.2773 14.1993 7.6807 23.2866 10.1925 8.8799

3 5.9007 13.0515 6.6728 23.2866 10.1925 8.7431

4 5.9659 13.0515 6.6728 18.6039 12.7268 9.3669

5 6.2121 14.2965 7.3532 23.2866 10.1925 8.7431

6 6.103 12.7633 6.6293 18.6039 12.7268 9.5037

7 6.2121 14.1993 7.6807 26.3327 32.1215 9.4454

8 6.2773 14.0633 7.3532 26.3327 32.1215 9.3086

9 5.9007 12.8183 6.6728 31.0154 29.5872 8.6848

10 6.2121 14.0633 7.3532 31.0154 29.5872 8.6848

11 6.103 12.9965 6.6293 26.3327 32.1215 9.3086

12 5.9007 12.9155 6.3453 23.2866 10.1925 8.7431

13 6.0098 14.4875 7.7242 31.0154 29.5872 8.8216

14 5.9007 12.6823 6.3453 23.2866 10.1925 8.8799

15 6.1682 12.8605 6.3018 23.2866 10.1925 8.8799

16 6.1682 12.7633 6.6293 31.0154 29.5872 8.8216

17 6.2121 14.4325 7.6807 18.6039 12.7268 9.5037

18 6.075 14.1183 7.3967 18.6039 12.7268 9.5037

19 6.103 12.6273 6.3018 31.0154 29.5872 8.8216

20 6.0098 14.3515 7.3967 18.6039 12.7268 9.3669

21 6.0098 14.1183 7.3967 18.6039 12.7268 9.3669

22 6.103 12.8605 6.3018 26.3327 32.1215 9.4454

23 6.075 14.3515 7.3967 31.0154 29.5872 8.8216

24 5.9659 12.6823 6.3453 18.6039 12.7268 9.5037

25 5.9659 12.8183 6.6728 31.0154 29.5872 8.6848

26 5.9659 12.9155 6.3453 26.3327 32.1215 9.3086

27 6.075 14.2543 7.7242 26.3327 32.1215 9.4454

28 6.075 14.4875 7.7242 31.0154 29.5872 8.6848

29 6.2773 14.2965 7.3532 26.3327 32.1215 9.4454

30 6.1682 12.9965 6.6293 18.6039 12.7268 9.3669

31 6.0098 14.2543 7.7242 23.2866 10.1925 8.8799

32 6.0750 14.4875 7.7242 26.3327 32.1215 9.3086

 212

Table C5 - FTM M7 (ANN-GRNN) Input Data

Scenario YA1 YA2 YA3 YB1 YB2 YB3

1 6.1521 12.684 6.4466 23.212 12.332 8.7172

2 6.2768 14.089 7.6894 23.213 11.577 8.8374

3 5.9116 12.955 6.6936 23.212 11.513 8.718

4 5.9701 13.038 6.7563 18.677 11.33 9.3888

5 6.2277 14.35 7.4312 23.212 11.513 8.718

6 6.1023 12.785 6.6971 18.677 11.166 9.5264

7 6.2277 14.206 7.807 26.259 33.266 9.4217

8 6.2768 13.944 7.3424 26.259 34.698 9.2681

9 5.9116 12.775 6.6629 31.086 26.835 8.7102

10 6.2277 14.021 7.3755 31.088 28.347 8.7016

11 6.1023 12.94 6.7204 26.259 34.698 9.2681

12 5.9116 12.838 6.4442 23.212 12.332 8.7172

13 5.9823 14.486 7.8085 31.091 27.324 8.8438

14 5.9116 12.676 6.4195 23.213 12.256 8.833

15 6.1521 12.844 6.4587 23.213 11.577 8.8374

16 6.1521 12.81 6.7074 31.09 28.936 8.85

17 6.2277 14.568 7.8878 18.677 11.166 9.5264

18 6.0352 14.113 7.4819 18.677 10.718 9.5256

19 6.1023 12.672 6.4422 31.091 27.324 8.8438

20 5.9823 14.391 7.4477 18.677 11.33 9.3888

21 5.9823 14.089 7.4021 18.677 10.787 9.3934

22 6.1023 12.846 6.4578 26.259 33.266 9.4217

23 6.0352 14.403 7.5677 31.09 28.936 8.85

24 5.9701 12.725 6.45 18.677 10.718 9.5256

25 5.9701 12.844 6.7052 31.086 26.835 8.7102

26 5.9701 12.906 6.471 26.259 33.259 9.2633

27 6.0352 14.3 7.9248 26.259 34.171 9.4146

28 6.156 14.488 7.8927 31.088 28.347 8.7016

29 6.2768 14.202 7.3588 26.259 34.171 9.4146

30 6.1521 12.967 6.7141 18.677 10.787 9.3934

31 5.9823 14.195 7.8021 23.213 12.256 8.833

32 6.156 14.488 7.8927 26.259 33.259 9.2633

 213

Table C6 - FTM Bonferroni α Comparison

 Individual Confidence Interval

 99.998% 99.985% 99.857% 99.29% 98.57% 97.14% 96.43% 92.86%

 Overall Confidence Interval
(Bonferroni α)

HL Output 99.99%
(0.0001)

99.9%
(0.001)

99%
(0.01)

95%
(0.05)

90%
(0.1)

80%
(0.2)

75%
(0.25)

50%
(0.5)

Z1 All but
M3

M2, M4,
M5, M7

M2, M4,
M5, M7

M2, M5,
M7

M2, M5,
M7

M2, M5,
M7

M2, M5,
M7

M2, M5,
M7

Z2 All but
M5

All but
M5

All but
M5

All but
M5

All but
M5

All but
M5

All but
M5

All but
M4, M5

Z3 All but
M3

M2, M4,
M5, M7

M2, M4,
M5, M7

M2, M5,
M7

M2, M5,
M7

M2, M5,
M7

M2, M5,
M7

M2, M5,
M7

 214

 Rep_determination_by_precision_BaseA.m

%Maj June Rodriguez - 08S PhD Dissertation
%AFIT/ENS
%Board Members: Dr. J.O. Miller, Dr. K. Bauer, LtCol R. Neher

%This file determines the desired precision accuracy. It estimates the
%mean with a specified error or precision.
%Reference: Law text, 4th ed, eqn 9.2
%For multiple measures of performance (3 in our case, per base), use the
%Bonferroni inequality
%Reference: Law text, 4th ed, eqn 9.11
clc;
close all;
clear;
%Load the file you need
data1 = load ('file1.txt');
data2 = load ('file2.txt');
data3 = load ('file3.txt');
alpha = .10 %specify alpha
alpha_bonf = alpha/3;%we want a ((1-alpha)/outputs)Bonferroni C.I., 2-tailed
beta1 = .10; %desired absolute error for data1
beta2 = .10; %desired absolute error for data2
beta3 = .10; %desired absolute error for data3
sim_numrep = 30; %number of replication in the ARENA simulation
sim_numrep_start = sim_numrep;
sim_numrep_stop = 1000; %ensure we don’t go over 1000 reps
tstat_orig=tinv((1-alpha/2),(sim_numrep-1));
%%%
% C-5 ACAR TiS %
%%%
% Take mean by rep %
for RepBaseAC_5ACAR=1:sim_numrep;
ind1 = find(data1(:,3)== RepBaseAC_5ACAR);
Mean_RepBaseAC_5ACAR(RepBaseAC_5ACAR) = mean(data1(ind1,1));
end
% Build Halfwidth %
C5_ACAR_Avg = mean(Mean_RepBaseAC_5ACAR)
C5_ACAR_Var = var(Mean_RepBaseAC_5ACAR)
data1_halfwidth_orig = tstat_orig*sqrt(C5_ACAR_Var/sim_numrep)
flag_1 = 0;
for i1 = sim_numrep_start:sim_numrep_stop
 tstat1=tinv((1-alpha_bonf/2),(i1-1));
 data1_halfwidth = tstat1*sqrt(C5_ACAR_Var/i1);
 %need to know how many more reps (n1) until halfwidth is <= beta1
 if data1_halfwidth <= beta1
 fprintf('\nThe number of reps needed for the sim is %4d',i1)
 fprintf('\nThe achieved data halfwidth value is %1.4f\n',data1_halfwidth)
 flag_1 = 1;
 break;
 end
end
if flag_1 == 0
 fprintf('\nThe number of reps for the sim must be increased larger than
%4d\n',sim_numrep_stop)
end
%%%
% KC-135 PIQ TiS %
%%%
% Take mean by rep %
for RepBaseAKC_135PIQ=1:sim_numrep;
 ind2 = find(data2(:,3)== RepBaseAKC_135PIQ);
 Mean_RepBaseAKC_135PIQ(RepBaseAKC_135PIQ) = mean(data2(ind2,1));
end
% Build Halfwidth %
KC135_PIQ_Avg = mean(Mean_RepBaseAKC_135PIQ)
KC135_PIQ_Var = var(Mean_RepBaseAKC_135PIQ)
data2_halfwidth_orig = tstat_orig*sqrt(KC135_PIQ_Var/sim_numrep)
flag_2 = 0;

 215

for i2 = sim_numrep_start:sim_numrep_stop
 tstat2=tinv((1-alpha_bonf/2),(i2-1));
 data2_halfwidth = tstat2*sqrt(KC135_PIQ_Var/i2);
 %need to know how many more reps (n2) until halfwidth is <= beta2
 if data2_halfwidth <= beta2
 fprintf('\nThe number of reps needed for the sim is %4d',i2)
 fprintf('\nThe achieved data halfwidth value is %1.4f\n',data2_halfwidth)
 flag_2 = 1;
 break;
 end
end
if flag_2 == 0
 fprintf('\nThe number of reps for the sim must be increased larger than
%4d\n',sim_numrep_stop)
end

%%%
% KC-135 IAC TiS %
%%%
% Take mean by rep %
for RepBaseAKC_135IAC=1:sim_numrep;
 ind3 = find(data3(:,3)== RepBaseAKC_135IAC);
 Mean_RepBaseAKC_135IAC(RepBaseAKC_135IAC)= mean(data3(ind3,1));
end
% Build Halfwidth %
KC135_IAC_Avg = mean(Mean_RepBaseAKC_135IAC)
KC135_IAC_Var = var(Mean_RepBaseAKC_135IAC)
data3_halfwidth = tstat_orig*sqrt(KC135_IAC_Var/sim_numrep);
flag_3 = 0;
for i3 = sim_numrep_start:sim_numrep_stop
 tstat3=tinv((1-alpha_bonf/2),(i3-1));
 data3_halfwidth = tstat3*sqrt(KC135_IAC_Var/i3);
 %need to know how many more reps (n3) until halfwidth is <= beta3
 if data3_halfwidth <= beta3
 fprintf('\nThe number of reps needed for the sim is %4d',i3)
 fprintf('\nThe achieved data halfwidth value is %1.4f\n',data3_halfwidth)
 flag_3 = 1;
 break;
 end
end
if flag_3 == 0
 fprintf('\nThe number of reps for the sim must be increased larger than
%4d\n',sim_numrep_stop)
end
%%%
BaseA_TotalNumReps_perResponse=[i1,i2,i3]

 216

BaseA_C5.m

%Maj June Rodriguez - 08S PhD Dissertation
%AFIT/ENS
%Board Members: Dr. J.O. Miller, Dr. K. Bauer, LtCol R. Neher

%This file will run the Arena simulation model given the desired model parameter
%changes
%%%%%%%%%%%%%%%%%%%%%% Arena Front End %%%%%%%%%%%%%%%%%%%%%%%%%%%
%To run simulation from command window, use this command
%and make sure you are in the right directory:
%BaseA_C5('F:\750GB My Documents\Research\Models\Altus Model\Lower Level Models\C-5\C-5
with AR\Base A\Scenario Runs\117 Reps ARENA 23Jan08\Base A C-5.doe')
%%%
function [tmp1, tmp2] = BaseA_C5(strfile)
clc;
scenario_Values = load('BaseA_TrngScenarios.txt');
tic;
for i = 1:32
 %%%%%%%%%%%LOCATE ARENA SERVER%%%
 arna = actxserver('arena.application');
 arnaModel = arna.Model;
 mymodel = arnaModel.invoke('Open',strfile);
 arnaModules = mymodel.Modules;
 mymodel.numberofreplications = num2str(117); %Select number of replications
 %%%%%%%%%%%%CHANGE INPUTS IN ARENA%%
 % Always check the "object" number to ensure you're pointing to the right
 % variables or resources
 %%
 %Variables Change
 idx = arnaModules.Find(1,'object.184174'); %C-5 ACAR Pilot Total
 C5_ACAR_PT = arnaModules.Item(idx);
 set(C5_ACAR_PT,'Data',['Initial Value(',num2str(1),')'],scenario_Values(i,2));
 % C5ACARPT = get(C5_ACAR_PT,'Data',['Initial Value(',num2str(1),')']);
 idx = arnaModules.Find(1,'object.183540'); %KC-135 PIQ Pilot Total
 KC135_PIQ_PT = arnaModules.Item(idx);
 set(KC135_PIQ_PT,'Data',['Initial Value(',num2str(1),')'],scenario_Values(i,3));
 %KC135PIQPT = get(KC135_PIQ_PT,'Data',['Initial Value(',num2str(1),')']);
 idx = arnaModules.Find(1,'object.183537'); %KC-135 IAC Pilot Total
 KC135_IAC_PT = arnaModules.Item(idx);
 set(KC135_IAC_PT,'Data',['Initial Value(',num2str(1),')'],scenario_Values(i,4));
 %KC135IACPT = get(KC135_IAC_PT,'Data',['Initial Value(',num2str(1),')']);
 %Resources Change
 idx = arnaModules.Find(1,'object.487855'); %C-5_1 Fleet Resource
 C5_ACFT1 = arnaModules.Item(idx);
 set(C5_ACFT1,'Data','Capacity',scenario_Values(i,5));
 %C5ACFT_1 = get(C5_ACFT1,'Data','Capacity');
 idx = arnaModules.Find(1,'object.487853'); %KC-135 Fleet Resource
 KC135_ACFT = arnaModules.Item(idx);
 set(KC135_ACFT,'Data','Capacity',scenario_Values(i,6));
 %KC135ACFT = get(KC135_ACFT,'Data','Capacity');
 mymodel.Go; %Run model
 mymodel.End %Stop simulation model
 %Create directory to retrieve output files from
 %Copy files from current directory to different folders per scenario
 Directory = ['F:\750GB My Documents\Research\Models\Altus Model\Lower Level Models\C-
5\C-5 with AR\Base A\Scenario Runs\117 Reps ARENA 23Jan08\Scenario' num2str(i)];
 mkdir(Directory)
 copyfile('Base A C_5 ACAR Output.txt',Directory)
 copyfile('Base A KC_135 PIQ Output.txt',Directory)
 copyfile('Base A KC_135 IAC Output.txt',Directory)
 copyfile('Base A TotGrads Output.txt',Directory)
 copyfile('Base A KC_135 IAC VRT Output.txt',Directory)
 copyfile('Base A KC_135 PIQ VRT Output.txt',Directory)
 copyfile('Base A C_5 ACAR VRT Output.txt',Directory)
 copyfile('Base A C-5.out',Directory)
end
toc;

 217

Appendix D: ALS Sortie Generation Model Data and Code

Table D1 - ASGM M1 and M2 Input Data

Scenario Y1_mean Y1 _se Y2_mean Y2_se Y3_mean Y3_se
1 0.6666 0.0002 0.1666 0.0001 3.2448 0.0009
2 0.6668 0.0002 0.1667 0.0001 3.2444 0.0009
3 0.6672 0.0002 0.1668 0.0001 3.2446 0.0008
4 0.6671 0.0002 0.1666 0.0001 3.2444 0.0006
5 0.6668 0.0002 0.1666 0.0001 3.2448 0.0007
6 0.6667 0.0002 0.1666 0.0001 3.2453 0.0007
7 0.6673 0.0002 0.1666 0.0001 3.2446 0.0006
8 0.6672 0.0002 0.1667 0.0001 3.2444 0.0007
9 0.6670 0.0002 0.1665 0.0001 3.2453 0.0006

Table D2 - ASGM M3 and M4 Input Data

Scenario Y1_mean Y1 _se Y2_mean Y2_se Y3_mean Y3_se
1 0.6666 0.0001 0.1667 0.000002 3.2445 0.0001
2 0.6667 0.0001 0.1667 0.000002 3.2444 0.0001
3 0.6669 0.0001 0.1667 0.000002 3.2442 0.0001
4 0.6667 0.0001 0.1667 0.000001 3.2444 0.0001
5 0.6666 0.0001 0.1667 0.000001 3.2445 0.0001
6 0.6667 0.0002 0.1667 0.000001 3.2444 0.0001
7 0.6670 0.0001 0.1667 0.000001 3.2443 0.0001
8 0.6669 0.0002 0.1667 0.000001 3.2443 0.0001
9 0.6666 0.0002 0.1667 0.000001 3.2445 0.0001

Table D3- ASGM M5 Input Data

Scenario Y1 Y2 Y3
1 (NORM(0.667,0.0589,14)) (0.06+0.21*BETA(4.33,4.20,14)) (2.29+2.04*BETA(7.95,9.04,14))
2 (NORM(0.667,0.0592,14)) (0.06+0.21*BETA(4.32,4.18,14)) (2.28+2.20*BETA(8.63,11.1,14))
3 (NORM(0.667,0.0591,14)) (0.06+0.21*BETA(4.31,4.16,14)) (2.30+2.04*BETA(7.86,9.11,14))
4 (NORM(0.667,0.0593,14)) (0.06+0.21*BETA(4.30,4.17,14)) (2.21+2.32*BETA(9.75,12.1,14))
5 (NORM(0.667,0.0597,14)) (0.06+0.21*BETA(4.34,4.22,14)) (2.20+2.57*BETA(10.8,15.8,14))
6 (NORM(0.667,0.0592,14)) (0.06+0.21*BETA(4.32,4.19,14)) (2.14+2.56*BETA(11.6,15.2,14))
7 (NORM(0.667,0.0603,14)) (0.06+0.21*BETA(4.33,4.19,14)) (2.19+2.81*BETA(11.6,19.3,14))
8 (NORM(0.667,0.0601,14)) (0.06+0.21*BETA(4.31,4.17,14)) (2.13+3.20*BETA(13.6,25.4,14))
9 (NORM(0.667,0.0606,14)) (0.06+0.21*BETA(4.33,4.21,14)) (2.16+2.84*BETA(12.2,19.7,14))

 218

Table D4 - ASGM M6 (Regression) Input Data

Scenario Y1 Y2 Y3
1 0.6669 0.1666 3.2447
2 0.6669 0.1666 3.2447
3 0.6669 0.1666 3.2447
4 0.6671 0.1666 3.2447
5 0.6671 0.1666 3.2447
6 0.6671 0.1666 3.2447
7 0.6673 0.1666 3.2447
8 0.6673 0.1666 3.2447
9 0.6673 0.1666 3.2447

Table D5 - ASGM M6.1 (Regression w/ CV) Input Data

Scenario Y1 Y2 Y3
1 0.6665 0.1662 3.2492
2 0.6665 0.1667 3.2427
3 0.6672 0.1671 3.2424
4 0.6670 0.1657 3.2440
5 0.6669 0.1667 3.2429
6 0.6668 0.1671 3.2440
7 0.6667 0.1669 3.2426
8 0.6671 0.1670 3.2445
9 0.6678 0.1655 3.2436

Table D6 - ASGM M7 (ANN-GRNN) Input Data

Scenario Y1 Y2 Y3
1 0.6668 0.1666 3.2446
2 0.6668 0.1667 3.2446
3 0.6669 0.1667 3.2447
4 0.6670 0.1666 3.2446
5 0.6669 0.1666 3.2447
6 0.6669 0.1666 3.2449
7 0.6671 0.1666 3.2446
8 0.6671 0.1666 3.2447
9 0.6670 0.1666 3.2450

 219

Table D7 - ASGM M7.1 (ANN-GRNN w/ CV) Input Data

Scenario Y1 Y2 Y3
1 0.6661 0.1664 3.2465
2 0.6662 0.1667 3.2449
3 0.6671 0.1669 3.2428
4 0.6669 0.1663 3.2455
5 0.6666 0.1666 3.2435
6 0.6668 0.1668 3.2449
7 0.6669 0.1666 3.2439
8 0.6671 0.1667 3.2447
9 0.6673 0.1661 3.2430

Table D8 - ASGM M8 (MetaSim) Input Data

Scenario Y1 Y2 Y3
1 0.6741 0.1699 3.3852
2 0.6767 0.1699 3.4610
3 0.6786 0.1698 3.5278
4 0.6785 0.1694 3.3879
5 0.6763 0.1693 3.4339
6 0.6782 0.1693 3.4874
7 0.6766 0.1691 3.3803
8 0.6743 0.1690 3.4347
9 0.6752 0.1690 3.5010

Table D9 - ASGM Control Variables

Control Variables Name
C1 Remove_MLPRF_Part
C2 Remove_DMT_Part
C3 Remove_APSP_Part
C4 Remove_ANT_Part
C5 MLPRF_Supply_Truck_Delay
C6 DMT_Supply_Truck_Delay
C7 APSP_Supply_Truck_Delay
C8 ANT_Supply_Truck_Delay
C9 MLPRF_Supply_Truck_Hold_Time
C10 DMT_Supply_Truck_Hold_Time
C11 APSP_Supply_Truck_Hold_Time
C12 ANT_Supply_Truck_Hold_Time
C13 Part_issues_from_Supply
C14 Install_Part
C15 Operational_Check
C16 Signoff_discrepancy
C17 Document_CA

 220

MetaSimASGM.m

%Maj June Rodriguez - 08S PhD Dissertation
%AFIT/ENS
%Board Members: Dr. J.O. Miller, Dr. K. Bauer, LtCol R. Neher
%
%This code will perform the MetaSim technique based on control variates
%The random controls are standardized based on Bauer and Wilson 1992 article
%titled Standardized Routing Variables: A New Class of Control Variates
clc;
clear;
close all;
format long;
tic;

directory = 'G:\250GB My Documents\Research\Models\Faas Model\ASGModel\Aggregated
Inputs\Method 8 - MetaSim\ARENA Model\';
ASGM_LowLevel_InputData = load([directory 'ASGM_Scenarios.txt']);
[r c] = size(ASGM_LowLevel_InputData);
% ASGM_LL_Inputdata = [];
data_LowerLevel = [];
for j = 1:9; %number of scenarios
 ASGM_LL_Inputdata = [];
 direct = [directory 'Scenario' num2str(j) '\'];
 %%%
 %Load files of potential controls and response; only 1 response at a
 %time is evaluated in this algorithm
 %Define Expected Mean (EM) and Expected Stdev (EStd) in mins/days of each
 %potential controls
 %%%
 % %
 %%%
 data_ASGM_raw = load([direct 'UnscheduledMX_VRT_Output.txt']);
 [row col] = size(data_ASGM_raw);
 countrows=1;
 countcols=1;
 for l = 7:3:col-1
 for k = 1:row
 count(countrows,countcols)= data_ASGM_raw(k,l); %# of instances for random
 control
 xbar(countrows,countcols)= data_ASGM_raw(k,l+1); %tally avg from sim
 s(countrows,countcols)= data_ASGM_raw(k,l+2); %tally stdev from sim
 countrows = countrows+1;
 end
 countrows = 1;
 countcols = countcols+1;
 end

 ASGM_LL_Inputdata = [ASGM_LL_Inputdata;
 ones(length(data_ASGM_raw),1)*ASGM_LowLevel_InputData(j,2:c)];
 %%%
 % Sortie Generation Model Potential Controls %
 %%%

 %%%
 % User given distribution is Tria(min=a,mode=m,max=b)
 % where Part Removal: min = 40 min, mode = 60 min, & max = 70 min.
 % where Supply Truck Delay: min=0.1 days, mode=0.3 days, & max=0.5 days.
 % Per Law 2006 Ch. 6, Triangular distribution's corresponding
 % mean = (min+max+mode)/3 and var = (a^2+b^2+m^2-ab-am-bm)/18 %
 %%%
 Remove_MLPRF_Part_EM = ((40+60+70)/3)/(60); %expected mean in minutes for MLPRF Part
 Removal
 Remove_MLPRF_Part_EStd = sqrt(((40^2+70^2+60^2-40*70-40*60-70*60)/18)/(60));
 %expected std dev in in minutes for MLPRF Part Removal
 Remove_DMT_Part_EM = ((40+60+70)/3)/(60); %expected mean in minutes for MLPRF Part
 Removal
 Remove_DMT_Part_EStd = sqrt(((40^2+70^2+60^2-40*70-40*60-70*60)/18)/(60)); %expected

 221

 std dev in in minutes for DMT Part Removal
 Remove_APSP_Part_EM = ((40+60+70)/3)/(60); %expected mean in minutes for MLPRF Part
 Removal
 Remove_APSP_Part_EStd = sqrt(((40^2+70^2+60^2-40*70-40*60-70*60)/18)/(60)); %expected
 std dev in in minutes for APSP Part Removal
 Remove_ANT_Part_EM = ((40+60+70)/3)/(60); %expected mean in minutes for MLPRF Part
 Removal
 Remove_ANT_Part_EStd = sqrt(((40^2+70^2+60^2-40*70-40*60-70*60)/18)/(60)); %expected
 std dev in in minutes for ANT Part Removal
 ST_Delay_MLPRF_EM = ((0.1+0.3+0.5)/3); %expected mean delay in days for MLPRF Supply
 Truck
 ST_Delay_MLPRF_EStd = sqrt(((0.1^2+0.3^2+0.5^2-0.1*0.5-0.1*0.3-0.5*0.3)/18));
 %expected mean delay in days for MLPRF Supply Truck
 ST_Delay_DMT_EM = ((0.1+0.3+0.5)/3); %expected mean delay in days for DMT Supply
 Truck
 ST_Delay_DMT_EStd = sqrt(((0.1^2+0.3^2+0.5^2-0.1*0.5-0.1*0.3-0.5*0.3)/18)); %expected
 mean delay in days for DMT Supply Truck
 ST_Delay_APSP_EM = ((0.1+0.3+0.5)/3); %expected mean delay in days for APSP Supply
 Truck
 ST_Delay_APSP_EStd = sqrt((0.1^2+0.3^2+0.5^2-0.1*0.5-0.1*0.3-0.5*0.3)/18); %expected
 mean delay in days for APSP Supply Truck
 ST_Delay_ANT_EM = ((0.1+0.3+0.5)/3); %expected mean delay in days for ANT Supply
 Truck
 ST_Delay_ANT_EStd = sqrt((0.1^2+0.3^2+0.5^2-0.1*0.5-0.1*0.3-0.5*0.3)/18); %expected
 mean delay in days for ANT Supply Truck
 %%%
 % User given distribution is Uniform(min=a,max=b)
 % where Supply Truck Hold: min=0.25 days,& max=0.5 days.
 % Per Law 2006 Ch. 6, Uniform distribution's corresponding
 % mean = (min+max)/2 and var = (b-a)^2/12 %
 %%%
 ST_Hold_MLPRF_EM = ((0.25+0.5)/2); %expected mean Hold in days for MLPRF Supply Truck
 ST_Hold_MLPRF_EStd = sqrt((0.5-0.25)^2/12); %expected mean Hold in days for MLPRF
 Supply Truck
 ST_Hold_DMT_EM = ((0.25+0.5)/2); %expected mean Hold in days for DMT Supply Truck
 ST_Hold_DMT_EStd = sqrt((0.5-0.25)^2/12); %expected mean Hold in days for DMT Supply
 Truck
 ST_Hold_APSP_EM = ((0.25+0.5)/2); %expected mean Hold in days for APSP Supply Truck
 ST_Hold_APSP_EStd = sqrt((0.5-0.25)^2/12); %expected mean Hold in days for APSP
 Supply Truck
 ST_Hold_ANT_EM = ((0.25+0.5)/2); %expected mean Hold in days for ANT Supply Truck
 ST_Hold_ANT_EStd = sqrt((0.5-0.25)^2/12); %expected mean Hold in days for ANT Supply
 Truck
 %%%
 % User given distribution is Tria(min=a,mode=m,max=b)
 % where Parts Issues: min = 5 min, mode = 10 min, & max = 15 min.
 % where Install Part: min = 60 min, mode = 84 min, & max = 120 min.
 % where Operational Check: min = 15 min, mode = 20 min, & max = 25 min.
 % where Signoff Discrepancy: min = 5 min, mode = 10 min, & max = 15 min.
 % where Document CA: min = 5 min, mode = 10 min, & max = 15 min.
 % Per Law 2006 Ch. 6, Triangular distribution's corresponding
 % mean = (min+max+mode)/3 and var = (a^2+b^2+m^2-ab-am-bm)/18 %
 %%%
 Part_issues_EM = ((5+10+15)/3)/(60); %expected mean in minutes for Part Issues
 Part_issues_EStd = sqrt(((5^2+10^2+15^2-5*10-5*15-10*15)/18)/(60)); %expected std dev
 in minutes for Part Issues
 Install_Part_EM = ((60+84+120)/3)/(60); %expected mean in minutes for Install Part
 Install_Part_EStd = sqrt(((60^2+84^2+120^2-60*84-60*120-84*120)/18)/(60)); %expected
 std dev in minutes for Install Part
 Ops_Check_EM = ((15+20+25)/3)/(60); %expected mean in minutes for Signoff Discrepancy
 Ops_Check_EStd = sqrt(((15^2+20^2+25^2-15*25-15*20-25*20)/18)/(60)); %expected std
 dev in minutes for Signoff Discrepancy
 Signoff_Disc_EM = ((5+10+15)/3)/(60); %expected mean in minutes for Signoff
 Discrepancy
 Signoff_Disc_EStd = sqrt(((5^2+10^2+15^2-5*10-5*15-10*15)/18)/(60)); %expected std
 dev in minutes for Signoff Discrepancy
 Doc_CA_EM = ((5+10+15)/3)/(60); %expected mean in minutes for Document CA
 Doc_CA_EStd = sqrt(((5^2+10^2+15^2-5*10-5*15-10*15)/18)/(60)); %expected std dev in
 minutes for Document CA

 222

% Use regular input plus random controls
% userMean = [0 0 Remove_MLPRF_Part_EM Remove_DMT_Part_EM Remove_APSP_Part_EM
Remove_ANT_Part_EM...
% ST_Delay_MLPRF_EM ST_Delay_DMT_EM ST_Delay_APSP_EM ST_Delay_ANT_EM...
% ST_Hold_MLPRF_EM ST_Hold_DMT_EM ST_Hold_APSP_EM ST_Hold_ANT_EM...
% Part_issues_EM Install_Part_EM Ops_Check_EM Signoff_Disc_EM Doc_CA_EM];

%Only random controls
 userMean = [Remove_MLPRF_Part_EM Remove_DMT_Part_EM Remove_APSP_Part_EM
Remove_ANT_Part_EM...
 ST_Delay_MLPRF_EM ST_Delay_DMT_EM ST_Delay_APSP_EM ST_Delay_ANT_EM...
 ST_Hold_MLPRF_EM ST_Hold_DMT_EM ST_Hold_APSP_EM ST_Hold_ANT_EM...
 Part_issues_EM Install_Part_EM Ops_Check_EM Signoff_Disc_EM Doc_CA_EM];

 variables = ['TAVG';'TStd';'TAVG';'TStd';'TAVG';'TStd';

'REIn';'Enta';'Ents';'REIn';'Enta';'Ents';'REIn';'Enta';'Ents';'REIn';'Enta';'Ents';
'DELI';'Enta';'Ents';'DELI';'Enta';'Ents';'DELI';'Enta';'Ents';'DELI';'Enta';'Ents';
'HOLI';'Enta';'Ents';'HOLI';'Enta';'Ents';'HOLI';'Enta';'Ents';'HOLI';'Enta';'Ents';
 'PIIn';'Enta';'Ents';
 'IPIn';'Enta';'Ents';
 'OPIn';'Enta';'Ents';
 'SDIn';'Enta';'Ents';
 'DCIn';'Enta';'Ents';
 'NREP'];
 cnt = 1;
%Bauer Wilson (1993) control pre-processing
 for i = 7:3:col-1
 if strcmp(variables(i,:),'REIn') %vars 1-4
 data_ASGM(:,cnt) =
(sqrt(data_ASGM_raw(:,i))/Remove_MLPRF_Part_EStd).*(data_ASGM_raw(:,i+1)-
Remove_MLPRF_Part_EM);
 cnt = cnt + 1;
 elseif strcmp(variables(i,:),'DELI') %vars 5-8
 data_ASGM(:,cnt) =
(sqrt(data_ASGM_raw(:,i))/ST_Delay_MLPRF_EStd).*(data_ASGM_raw(:,i+1)-ST_Delay_MLPRF_EM);
 cnt = cnt + 1;
 elseif strcmp(variables(i,:),'HOLI') %vars 9-12
 data_ASGM(:,cnt) =
(sqrt(data_ASGM_raw(:,i))/ST_Hold_MLPRF_EStd).*(data_ASGM_raw(:,i+1)-ST_Hold_MLPRF_EM);
 cnt = cnt + 1;
 elseif strcmp(variables(i,:),'PIIn') %var 13
 data_ASGM(:,cnt) =
(sqrt(data_ASGM_raw(:,i))/Part_issues_EStd).*(data_ASGM_raw(:,i+1)-Part_issues_EM);
 cnt = cnt + 1;
 elseif strcmp(variables(i,:),'IPIn') %var 14
 data_ASGM(:,cnt) =
(sqrt(data_ASGM_raw(:,i))/Install_Part_EStd).*(data_ASGM_raw(:,i+1)-Install_Part_EM);
 cnt = cnt + 1;
 elseif strcmp(variables(i,:),'OPIn') %var 15
 data_ASGM(:,cnt) =
(sqrt(data_ASGM_raw(:,i))/Ops_Check_EStd).*(data_ASGM_raw(:,i+1)-Ops_Check_EM);
 cnt = cnt + 1;
 elseif strcmp(variables(i,:),'SDIn') %var 16
 data_ASGM(:,cnt) =
(sqrt(data_ASGM_raw(:,i))/Signoff_Disc_EStd).*(data_ASGM_raw(:,i+1)-Signoff_Disc_EM);
 cnt = cnt + 1;
 elseif strcmp(variables(i,:),'DCIn') %var 17
 data_ASGM(:,cnt) =
(sqrt(data_ASGM_raw(:,i))/Doc_CA_EStd).*(data_ASGM_raw(:,i+1)-Doc_CA_EM);
 cnt = cnt + 1;
 end
 end
 %%%
 % Start control variates technnique %
 %%%
 %Random variables data
 data_LowerLevel = [data_ASGM];
 CONTROLS = data_LowerLevel;

 223

 RESPONSE = [data_ASGM_raw(:,1) data_ASGM_raw(:,3) data_ASGM_raw(:,5)];
 Betas = controlVariatesTechnnique(RESPONSE,CONTROLS);
 BetaTmp{j} = Betas;
 %%%
 % Start Meta Simulation %
 %%%
 %Count of random variables
 normparam.userMean = userMean;
 normparam.count=[count];
 normparam.xbar =[ASGM_LL_Inputdata xbar];
 normparam.s =[s];
 Y = metaSimulation(normparam, Betas, 1);
 RMSE(j,:) = sqrt((mean(RESPONSE) - Y).^2);
 MAPD(j,:) = abs((mean(RESPONSE) - Y))./mean(RESPONSE);
 Target(j,:,:) = RESPONSE;
 Target_avg(j,:) = mean(RESPONSE);
 Y_Predict(j,:,:) = Y;
end

% RMSE
% MAPD
toc

mean(Y_Predict,2)

 224

controlVariatesTechnnique.m

function Betas = controlVariatesTechnnique(RESPONSE,CONTROLS,alphaLevel)
%Maj June Rodriguez - 08S PhD Dissertation
%AFIT/ENS
%Board Members: Dr. J.O. Miller, Dr. K. Bauer, LtCol R. Neher
%Usage:
% Betas = controlVariatesTechnnique(RESPONSE,CONTROLS);
% Betas = controlVariatesTechnnique(RESPONSE,CONTROLS,alphaLevel);
%Inputs:
% RESPONSE [N x T] -- Matrix containing the targets, N is the number of
% replication, T is number of targets
% CONTROLS [N x M] -- Random process variables, N is the number of
% replication, M is the number of variables
% alphaLevel [1 x 1] -- if alphaLevel is not given, default is 0.05
%Outputs:
% Betas [1 x T] -- is a structure containing the beta weights and
% corresponding indicies.
% Betas.b(1,t) - are the beta weights
% Betas.in(1,t) - are the indicies associated with the betas (b)
% t [1,2,...T] - is the size of the number of targets T
%This code will perform Variance reduction technique: Control Variates
%Reference: Code modified from the original code by Capt Bednar.
%%%

if nargin < 2
 error('This function requires at least 2 inputs: RESPONSE and CONTROLS')
end
if nargin < 3
 alphaLevel = 0.05;
end
X = CONTROLS;
n = size(X,1);
Rsqrs =[];
Intersection = [];
ResponseControls = [];
B2 = [];
P2 = [];
Betas = [];
for i = 1:size(RESPONSE,2) %Do for the total number of response(each)
 y = RESPONSE(:,i);
 [B,SE,PVAL,in,stats,nextstep,history] = ...
 stepwisefit(X,y,'penter',alphaLevel,'display','off');
 % 2-columns, col 1=ones, col 2=col of 'in' , mu subx is not subtracted
 % since the data was already pre-processed with mean of col "in"
 % subtracted
 Xnew = [ones(n,1),X(:,in)];
 %QR Orthogonal-triangular decomposition. Eqn 2.2.35 pg 69 Bauer Oper
 %760 notes
 [Q,R] = qr(Xnew,0);
 b = R\(Q'*y); %same as above
 Betas(i).b = b;
 Betas(i).B = B';
 Betas(i).in = in;
 %b=(inv(Xnew'*Xnew))*(Xnew'*RESPONSE) % Alternative calculation for b
 yhat = Xnew*b; %New mean for CV C.I.
 r = y - yhat; %residual errors
 dfe = n-rank(R); %residual degrees of freedom
 df0 = sum(in); %dof of controls
 SStotal = norm(y-mean(y))^2;
 SSresid = norm(r)^2;
 mse = SSresid/dfe; %same as sige from below
 rmse = sqrt(SSresid/dfe);
 Rinv = R\eye(size(R));
 se = rmse * sqrt(sum(Rinv.^2,2));

 RSS = norm(yhat-mean(y))^2; % Regression sum of squares.
 r2 = RSS/SStotal; % R-square statistic.

 225

 r2adj = 1 - (((n-1)/(n-sum(in)))*(1-r2));
 %variance of residuals, sigma-squared hat of error
 sige = (r'*r)/(n-1-sum(in));
 Betas(i).mse = mse;
 %only the actual "in" control column, not all potential controls
 tmpinv = inv(Xnew'*Xnew);
 s11 = tmpinv(1,1);
 R;
 Rsqrs = [Rsqrs;i, r2, r2adj];
 Intersection = [Intersection; i, b(1), se(1), sige, s11, sum(in)];
 ResponseControls = [ResponseControls;in]; %list w/c control(s) is in

 B2 = [B2;i,B']; %bval
 P2 = [P2;i,PVAL']; %pval

 %Use these values as the parameters for Normal distn, e.g.,
 %Norm(CV_mean,CV_stdev) for CV (Method 3) aggregated inputs
 CV_mean(i) = b(1); %intercept b0
 CV_stderror(i) = sqrt(sige*s11); %std error
 rsq(i)= r2;
 Betas(i).r2=r2;
end;

 226

metaSimulation.m

function y = metaSimulation(normparam, Betas, normalizingConstant)
%Maj June Rodriguez - 08S PhD Dissertation
%AFIT/ENS
%Board Members: Dr. J.O. Miller, Dr. K. Bauer, LtCol R. Neher
%
%Usage: This code will perform a meta-simulation using the results from the
% control-variate technique on the collected simulation random variables.
%Inputs:
% normparam [1 x 4] - structure
% .count [N x M] -- Random process variables, N is the number of
% replication, M is the number of variables
% .xbar [2+N x M] -- a double of the mu parameter for the
% normal distribution
% .s [N x M] -- a double of the sigma parameter for the
% normal distribution
% .userMean [1 x M] -- a user given mean for the simulation
% Betas [1 x T] -- is a structure containing the beta weights,
% corresponding indecies, and mse.
% Betas.b -- the first weight is the bias b0, the following
% weights are the weight corresponding to the
% Betas.in == 1
% Betas.B -- are all the beta weights without the bias b0
% Betas.in -- are the indices associated with the betas (B)
% Betas.mse -- mean squared error
% normalizingConstant [1 x 1] -- This value changes the units for the
% specified model
%Outputs:
% y [N x T] -- predicted y's of the metasim
%
%Additional functions needed:
% none
%Reference: New methodology
%%%
%This ensures that normrnd starts from the same seed (state) every time the
%the function is called
state = 200;
randn('state', state);
rand('state', state);
%%%
if nargin < 3
 error('This function requires: data structure, data counts, beta, and normalizing
constant')
end
dataCount = normparam.count;
T = size(Betas,2);
normConst = normalizingConstant;
y = zeros(1,T);
for t = 1:T
 y(t) = Betas(1,t).b(1);
 for in = 1:size(Betas(1,t).in,2)
 if Betas(1,t).in(in) == 1
 %Controls already pre-processed, not needed here
 normDist = normrnd(mean(normparam.xbar(:,in)),...
 mean(normparam.s(:,in)./sqrt(normparam.count(:,in))));
% %Controls not pre-processed, subtract userMean
% normDist = normrnd(mean(normparam.xbar(:,in)),...
% mean(normparam.s(:,in)./sqrt(normparam.count(:,in))))...
% -normparam.userMean(:,in);
 dist = normDist/normConst;
 tmp = Betas(1,t).B(in)*(dist);
 y(t) = y(t) + tmp ;
 end
 end
 y(t) = y(t);%+ Betas(1,t).mse;
end

 227

Appendix E: Routing Model Data and Code

RM Scenario 1

DM GRNN GRNN BWC GRNN ConR GRNN ConT

46.30 46.55 46.80 47.05 47.30 47.55 47.80 48.05
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Distribution Function Plot

X-Value

F(
x)

 (P
ro

po
rti

on
)

Figure E1 - RM Y1 CDF Comparison (2)

DM Reg Reg BW C Reg ConR Reg ConT

46 47 48 49 50 51 52
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Distribution Function Plot

X-Value

F(
x)

 (P
ro

po
rti

on
)

Figure E3 - RM Y1 CDF Comparison (2)

DM GRNN Reg

46.30 46.55 46.80 47.05 47.30 47.55 47.80 48.05
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Distribution Function Plot

X-Value

F(
x)

 (P
ro

po
rti

on
)

Figure E5 - RM Y1 CDF Comparison (3)

GRNN (mea
diff. =
0.11723)

GRNN BWC
(mean diff. =
0.07434)

GRNN ConR
(mean diff. =
0.07767)

GRNN ConT
(mean diff. =
0.07767)

46.30 46.55 46.80 47.05 47.30 47.55 47.80 48.05

0.0

0.2

0.4

0.6

0.0

-0.2

-0.4

-0.6

Dist-Fnc-Diff Plot

X-Value

Di
ffe

re
nc

e
(P

ro
po

rti
on

)

Figure E2 - RM Y1 Dist-Fnc-Diff Plot (1)

Reg (mean
diff. =
0.03353)

Reg BWC
(mean diff. =
0.02414)

Reg ConR
(mean diff. =
0.02789)

Reg ConT
(mean diff. =
0.83971)

46 47 48 49 50 51 52

0.0

0.2

0.4

0.6

0.8

1.0

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Dist-Fnc-Diff Plot

X-Value

Di
ffe

re
nc

e
(P

ro
po

rti
on

)

Figure E4 - RM Y1 Dist-Fnc-Diff Plot (2)

GRNN (mean diff. = 0.11723) Reg (mean diff. = 0.11723)

46.30 46.55 46.80 47.05 47.30 47.55 47.80 48.05

0.0

0.2

0.4

0.6

0.0

-0.2

-0.4

-0.6

Distribution-Function-Differences Plot

X-Value

Di
ffe

re
nc

e
(P

ro
po

rti
on

)

Figure E6 - RM Y1 Dist-Fnc-Diff Plot (3)

 228

Appendix F: MetaSim Pseudo-Code

Inputs:
 normparam [1 x 4] – is a structure

.count [n x d] -- the number of occurrence of the control variables. Use the actual
input value for the input variables and the count of the occurrence of the random
variate in each replication, n is the number of replication, d is the number of
control variables

.xbar [n x d] -- the average value of the controls; a double of the sample mean, x ,
parameter for the normal distribution

.s [n x d] -- the standard deviation of the random controls; a double of the sample
standard deviation, s , parameter for the normal distribution

.userMean [1 x d] -- a user given mean for the simulation
 Betas [1 x T] – is a structure containing the beta weights, corresponding indices, and

mean squared error.
.b [r x 1] -- the first weight is the bias β0, the following weights are the weight

corresponding to the Betas.in = = 1 (significant controls)
 .B [1 x d] -- all the β weights without the bias β0
 .in [1 x d] -- the indices of 0’s and 1’s associated with Betas.B
 .mse [1 x 1] -- the mean squared error

Outputs:
 y [n x T] -- predicted y's of the MetaSim

Algorithm (Pseudo-Code):

T = Number of targets (response); /Establish number of response/
y = zeros(1,T); /Initialize MetaSim prediction to equal zero

for each T/

for t = 1:T do /Do for each response/
 y(t) = Betas(1,t).b(1); /Set MetaSim prediction = β0/
 for in = 1:size(Betas(1,t).in,2) do /Do for each control/
 if Betas(1,t).in(in) = = 1 /Check if control is significant/
 normDist = normrnd(mean(normparam.xbar(:,in)),...

mean(normparam.s(:,in)./sqrt(normparam.count(:,in))));
/Randomly generate

, sNormal x
count

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

/

 tmp = Betas(1,t).B(in)*(normDist -normparam.userMean(:,in));
/Multiply significant variables with
corresponding weights/

 229

 y(t) = y(t) + tmp ; /Update random portion of regression/
 end
end

y(t) = y(t); /Update entire regression for MetaSim
prediction/

end
__

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

08-06-2008
2. REPORT TYPE

Ph. D. Dissertation

3. DATES COVERED (From – To)
Sept 2005 – Aug 2008

4. TITLE AND SUBTITLE

 METAMODELING TECHNIQUES TO AID IN THE AGGREGATION
PROCESS OF LARGE HIERARCHICAL SIMULATION MODELS

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Rodriguez, June, F.D., Major, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Street, Building 642
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/DS/ENS/08-03

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
ATTN: Sharon Nichols, DSN 425 8819
HQ AF/A9
1570 Air Force Pentagon
Washington, DC 20330-1570

10. SPONSOR/MONITOR’S ACRONYM(S)
HQ AF/A9

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This research investigates how aggregation is currently conducted for simulation of large systems. The purpose is to examine how to
achieve suitable aggregation in the simulation of large systems. More specifically, investigating how to accurately aggregate
hierarchical lower-level (higher resolution) models into the next higher-level in order to reduce the complexity of the overall
simulation model. The focus is on the exploration of the different aggregation techniques for hierarchical lower-level (higher
resolution) models into the next higher-level. We develop aggregation procedures between two simulation levels (e.g., aggregation
of engagement level models into a mission level model) to address how much and what information needs to pass from the high-
resolution to the low-resolution model in order to preserve statistical fidelity.

We present a mathematical representation of the simulation model based on network theory and procedures for simulation
aggregation that are logical and executable. This research examines the effectiveness of several statistical techniques, to include
regression and three types of artificial neural networks, as an aggregation technique in predicting outputs of the lower-level model
and evaluating its effects as an input into the next higher-level model. The proposed process is a collection of various conventional
statistical and aggregation techniques, to include one novel concept and extensions to the regression and neural network methods,
which are compared to the truth simulation model, where the truth model is when actual lower-level model outputs are used as a
direct input into the next higher-level model. The aggregation methodology developed in this research provides an analytic
foundation that formally defines the necessary steps essential in appropriately and effectively simulating large hierarchical systems.
15. SUBJECT TERMS
Modeling; simulation; aggregation; metamodeling

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

248

19a. NAME OF RESPONSIBLE PERSON
Dr. J.O. Miller (ENS)

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4326;

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	JDRodriguez_Dissertation_Aug08.pdf
	AIR FORCE INSTITUTE OF TECHNOLOGY
	Presented to the Faculty

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	I. Introduction
	1.1 General Discussion
	1.2 Motivation
	1.3 Problem Statement
	1.4 Proposed Research Contributions
	1.4.1 Primary Research Contributions
	1.4.2 Secondary Research Contributions

	1.5 Organization of Dissertation

	II. Literature Review
	2.1 Overview
	2.2 Background
	2.3 Pre-processing and Feature Selection/Feature Extraction
	2.4 Variance Reduction Techniques
	2.5 Model Abstraction
	2.6 Modeling and Simulation Software Tools

	III. Aggregation Methodology Development
	3.1 Overview
	3.2 Experimental Toy Model: (s, S) Inventory System
	3.3 Proposed Aggregation Process
	3.4 Mathematical Representation of a Discrete Event Simulation (DEVS) using factor analytic method
	3.5 Determining number of replications based on precision accuracy 
	3.6 Aggregation Methodologies
	3.6.1 Method 1 – Mean ()
	3.6.2 Method 2 – Normal ()
	3.6.3 Method 3 – Control Variate (CV) Technique Mean ()
	3.6.4 Method 4 -
	3.6.5 Method 5 – Distribution Fitting
	3.6.6 Method 6 – Regression
	3.6.7 Method 7 – Artificial Neural Network (ANN)
	3.6.8 Method 8 – Meta Simulation (MetaSim)

	3.7 Training and Testing Data Set-up
	3.8 Higher-Level Model Output Comparison
	3.9 Chapter Summary

	IV. Application I: Flying Training Model (FTM), Results and Analysis
	4.1 Overview
	4.2 Flying Training Model
	4.2.1 Model Assumptions
	4.2.2 Model Description
	4.2.3 Simulation Input and Output Parameters

	4.3 Results and Analysis
	4.3.1 Mathematical Representation of the Flying Training Model
	4.3.2 Determining the Number of Replications Based on 
	4.3.3 Training/Testing Data set-up
	4.3.4 Output Comparison

	4.4 Summary

	V. Application II: ALS Sortie Generation Model (ASGM), Results and Analysis
	5.1 Overview
	5.2 ALS Sortie Generation Model
	5.2.1 Model Assumptions
	5.2.2 Model Description
	5.2.3 Simulation Input and Output Parameters

	5.3 Results and Analysis
	5.3.1 Mathematical Representation of the ALS Sortie Generation (ASG) Model
	5.3.2 Determining the number of replications
	5.3.3 Training/Testing Data set-up
	5.3.4 Output Comparison

	5.4 Routing Model (RM)
	5.4.1 Routing Model Assumptions
	5.4.2 Routing Model Description
	5.4.3 Routing Model Training/Testing Data set-up
	5.4.4 Routing Model Output Comparison

	5.5 Summary

	VI. Contributions and Future Research
	6.1 Overview
	6.2 Research Contributions
	6.3 Recommendations for Future Research
	6.4 Conclusion

	Bibliography
	Appendix A: (s, S) Inventory Toy Model Data and Code
	Appendix B: Flying Training Model Details
	Appendix C: Flying Training Model Data and Code
	Appendix D: ALS Sortie Generation Model Data and Code
	Appendix E: Routing Model Data and Code
	Appendix F: MetaSim Pseudo-Code

	SF 298 Rpt JRodriguez.pdf

